Qwen3-30B-A3B-medqa

This model is a fine-tuned version of Qwen/Qwen3-30B-A3B on the medqa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.7193 0.2326 10 0.2340
0.0363 0.4651 20 0.0410
0.0272 0.6977 30 0.0311
0.0287 0.9302 40 0.0277
0.018 1.1628 50 0.0271
0.0191 1.3953 60 0.0257
0.0162 1.6279 70 0.0257
0.0191 1.8605 80 0.0256
0.0113 2.0930 90 0.0255
0.013 2.3256 100 0.0270
0.0096 2.5581 110 0.0274
0.0091 2.7907 120 0.0275

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
13
Safetensors
Model size
30.5B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for airesearch/Qwen3-30B-A3B-medqa

Finetuned
Qwen/Qwen3-30B-A3B
Adapter
(11)
this model