twitter-roberta-base-sentiment-latest_v3_scratch
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9484
- Accuracy: 0.8522
- Precision Macro: 0.7150
- Recall Macro: 0.6816
- F1 Macro: 0.6946
- F1 Weighted: 0.8484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 45 | 0.7207 | 0.6728 | 0.4697 | 0.4605 | 0.4446 | 0.6413 |
0.8468 | 2.0 | 90 | 0.7087 | 0.6721 | 0.5134 | 0.4813 | 0.4506 | 0.6414 |
0.7104 | 3.0 | 135 | 0.5202 | 0.7979 | 0.5365 | 0.5604 | 0.5445 | 0.7796 |
0.6128 | 4.0 | 180 | 0.5060 | 0.8105 | 0.7116 | 0.6006 | 0.6166 | 0.7984 |
0.505 | 5.0 | 225 | 0.4700 | 0.8212 | 0.7406 | 0.6029 | 0.6075 | 0.8079 |
0.446 | 6.0 | 270 | 0.5124 | 0.8143 | 0.5551 | 0.5735 | 0.5559 | 0.7957 |
0.4095 | 7.0 | 315 | 0.4568 | 0.8408 | 0.6926 | 0.6578 | 0.6700 | 0.8360 |
0.413 | 8.0 | 360 | 0.4471 | 0.8484 | 0.5658 | 0.5917 | 0.5783 | 0.8282 |
0.3451 | 9.0 | 405 | 0.4247 | 0.8534 | 0.7131 | 0.6305 | 0.6403 | 0.8419 |
0.3124 | 10.0 | 450 | 0.4419 | 0.8591 | 0.7675 | 0.6622 | 0.6852 | 0.8508 |
0.3124 | 11.0 | 495 | 0.4351 | 0.8566 | 0.7533 | 0.6746 | 0.6953 | 0.8502 |
0.2778 | 12.0 | 540 | 0.4418 | 0.8579 | 0.7673 | 0.6778 | 0.7026 | 0.8514 |
0.2572 | 13.0 | 585 | 0.5176 | 0.8497 | 0.7386 | 0.6759 | 0.6962 | 0.8443 |
0.2252 | 14.0 | 630 | 0.4637 | 0.8503 | 0.7174 | 0.6935 | 0.7034 | 0.8479 |
0.2127 | 15.0 | 675 | 0.5122 | 0.8509 | 0.7916 | 0.6596 | 0.6877 | 0.8424 |
0.1798 | 16.0 | 720 | 0.5424 | 0.8433 | 0.7153 | 0.6577 | 0.6757 | 0.8369 |
0.1483 | 17.0 | 765 | 0.5590 | 0.8522 | 0.7237 | 0.6779 | 0.6940 | 0.8475 |
0.1414 | 18.0 | 810 | 0.6393 | 0.8610 | 0.7674 | 0.6679 | 0.6913 | 0.8532 |
0.1173 | 19.0 | 855 | 0.6078 | 0.8465 | 0.7128 | 0.6905 | 0.7000 | 0.8442 |
0.1019 | 20.0 | 900 | 0.6100 | 0.8547 | 0.7817 | 0.6473 | 0.6684 | 0.8444 |
0.1019 | 21.0 | 945 | 0.7196 | 0.8515 | 0.7398 | 0.6640 | 0.6854 | 0.8445 |
0.0913 | 22.0 | 990 | 0.7781 | 0.8332 | 0.6793 | 0.6502 | 0.6608 | 0.8285 |
0.0764 | 23.0 | 1035 | 0.7152 | 0.8522 | 0.7098 | 0.6866 | 0.6960 | 0.8494 |
0.0656 | 24.0 | 1080 | 0.7987 | 0.8446 | 0.6926 | 0.6917 | 0.6918 | 0.8444 |
0.0613 | 25.0 | 1125 | 0.7605 | 0.8572 | 0.7165 | 0.6988 | 0.7063 | 0.8551 |
0.0527 | 26.0 | 1170 | 0.7406 | 0.8572 | 0.7322 | 0.6900 | 0.7056 | 0.8532 |
0.0432 | 27.0 | 1215 | 0.8191 | 0.8572 | 0.7354 | 0.6893 | 0.7062 | 0.8530 |
0.038 | 28.0 | 1260 | 0.7626 | 0.8598 | 0.7403 | 0.6714 | 0.6908 | 0.8531 |
0.0354 | 29.0 | 1305 | 0.8406 | 0.8553 | 0.7084 | 0.6848 | 0.6942 | 0.8523 |
0.0298 | 30.0 | 1350 | 0.8857 | 0.8490 | 0.7100 | 0.6873 | 0.6969 | 0.8464 |
0.0298 | 31.0 | 1395 | 0.8856 | 0.8553 | 0.7516 | 0.6753 | 0.6981 | 0.8491 |
0.0243 | 32.0 | 1440 | 0.8640 | 0.8623 | 0.7457 | 0.7018 | 0.7184 | 0.8586 |
0.0256 | 33.0 | 1485 | 0.8976 | 0.8515 | 0.7116 | 0.6892 | 0.6987 | 0.8490 |
0.0189 | 34.0 | 1530 | 0.8932 | 0.8579 | 0.7306 | 0.6822 | 0.6988 | 0.8530 |
0.0172 | 35.0 | 1575 | 0.9222 | 0.8497 | 0.6978 | 0.6842 | 0.6902 | 0.8478 |
0.0146 | 36.0 | 1620 | 0.9238 | 0.8579 | 0.7263 | 0.6860 | 0.7009 | 0.8537 |
0.0148 | 37.0 | 1665 | 0.9424 | 0.8528 | 0.7068 | 0.6862 | 0.6950 | 0.8502 |
0.0129 | 38.0 | 1710 | 0.9515 | 0.8522 | 0.7128 | 0.6815 | 0.6938 | 0.8485 |
0.0106 | 39.0 | 1755 | 0.9490 | 0.8528 | 0.7155 | 0.6820 | 0.6950 | 0.8490 |
0.0136 | 40.0 | 1800 | 0.9484 | 0.8522 | 0.7150 | 0.6816 | 0.6946 | 0.8484 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support