twitter-roberta-base-sentiment-latest_v3_scratch

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9484
  • Accuracy: 0.8522
  • Precision Macro: 0.7150
  • Recall Macro: 0.6816
  • F1 Macro: 0.6946
  • F1 Weighted: 0.8484

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
No log 1.0 45 0.7207 0.6728 0.4697 0.4605 0.4446 0.6413
0.8468 2.0 90 0.7087 0.6721 0.5134 0.4813 0.4506 0.6414
0.7104 3.0 135 0.5202 0.7979 0.5365 0.5604 0.5445 0.7796
0.6128 4.0 180 0.5060 0.8105 0.7116 0.6006 0.6166 0.7984
0.505 5.0 225 0.4700 0.8212 0.7406 0.6029 0.6075 0.8079
0.446 6.0 270 0.5124 0.8143 0.5551 0.5735 0.5559 0.7957
0.4095 7.0 315 0.4568 0.8408 0.6926 0.6578 0.6700 0.8360
0.413 8.0 360 0.4471 0.8484 0.5658 0.5917 0.5783 0.8282
0.3451 9.0 405 0.4247 0.8534 0.7131 0.6305 0.6403 0.8419
0.3124 10.0 450 0.4419 0.8591 0.7675 0.6622 0.6852 0.8508
0.3124 11.0 495 0.4351 0.8566 0.7533 0.6746 0.6953 0.8502
0.2778 12.0 540 0.4418 0.8579 0.7673 0.6778 0.7026 0.8514
0.2572 13.0 585 0.5176 0.8497 0.7386 0.6759 0.6962 0.8443
0.2252 14.0 630 0.4637 0.8503 0.7174 0.6935 0.7034 0.8479
0.2127 15.0 675 0.5122 0.8509 0.7916 0.6596 0.6877 0.8424
0.1798 16.0 720 0.5424 0.8433 0.7153 0.6577 0.6757 0.8369
0.1483 17.0 765 0.5590 0.8522 0.7237 0.6779 0.6940 0.8475
0.1414 18.0 810 0.6393 0.8610 0.7674 0.6679 0.6913 0.8532
0.1173 19.0 855 0.6078 0.8465 0.7128 0.6905 0.7000 0.8442
0.1019 20.0 900 0.6100 0.8547 0.7817 0.6473 0.6684 0.8444
0.1019 21.0 945 0.7196 0.8515 0.7398 0.6640 0.6854 0.8445
0.0913 22.0 990 0.7781 0.8332 0.6793 0.6502 0.6608 0.8285
0.0764 23.0 1035 0.7152 0.8522 0.7098 0.6866 0.6960 0.8494
0.0656 24.0 1080 0.7987 0.8446 0.6926 0.6917 0.6918 0.8444
0.0613 25.0 1125 0.7605 0.8572 0.7165 0.6988 0.7063 0.8551
0.0527 26.0 1170 0.7406 0.8572 0.7322 0.6900 0.7056 0.8532
0.0432 27.0 1215 0.8191 0.8572 0.7354 0.6893 0.7062 0.8530
0.038 28.0 1260 0.7626 0.8598 0.7403 0.6714 0.6908 0.8531
0.0354 29.0 1305 0.8406 0.8553 0.7084 0.6848 0.6942 0.8523
0.0298 30.0 1350 0.8857 0.8490 0.7100 0.6873 0.6969 0.8464
0.0298 31.0 1395 0.8856 0.8553 0.7516 0.6753 0.6981 0.8491
0.0243 32.0 1440 0.8640 0.8623 0.7457 0.7018 0.7184 0.8586
0.0256 33.0 1485 0.8976 0.8515 0.7116 0.6892 0.6987 0.8490
0.0189 34.0 1530 0.8932 0.8579 0.7306 0.6822 0.6988 0.8530
0.0172 35.0 1575 0.9222 0.8497 0.6978 0.6842 0.6902 0.8478
0.0146 36.0 1620 0.9238 0.8579 0.7263 0.6860 0.7009 0.8537
0.0148 37.0 1665 0.9424 0.8528 0.7068 0.6862 0.6950 0.8502
0.0129 38.0 1710 0.9515 0.8522 0.7128 0.6815 0.6938 0.8485
0.0106 39.0 1755 0.9490 0.8528 0.7155 0.6820 0.6950 0.8490
0.0136 40.0 1800 0.9484 0.8522 0.7150 0.6816 0.6946 0.8484

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
13
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aiface/twitter-roberta-base-sentiment-latest_v3_scratch

Finetuned
(208)
this model