aiface commited on
Commit
dda6362
·
verified ·
1 Parent(s): 61ac90b

Model save

Browse files
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: nlptown/bert-base-multilingual-uncased-sentiment
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: bert-base-multilingual-uncased-sentiment_v3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # bert-base-multilingual-uncased-sentiment_v3
18
+
19
+ This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4987
22
+ - Accuracy: 0.9286
23
+ - Precision Macro: 0.8226
24
+ - Recall Macro: 0.7931
25
+ - F1 Macro: 0.8061
26
+ - F1 Weighted: 0.9269
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 128
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 20
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
60
+ | 0.3933 | 1.0 | 90 | 0.2349 | 0.9292 | 0.8484 | 0.7197 | 0.7474 | 0.9202 |
61
+ | 0.2051 | 2.0 | 180 | 0.2166 | 0.9236 | 0.8134 | 0.7619 | 0.7811 | 0.9199 |
62
+ | 0.1494 | 3.0 | 270 | 0.2369 | 0.9362 | 0.8619 | 0.7775 | 0.8072 | 0.9321 |
63
+ | 0.1233 | 4.0 | 360 | 0.2290 | 0.9343 | 0.8660 | 0.7894 | 0.8176 | 0.9309 |
64
+ | 0.0838 | 5.0 | 450 | 0.2490 | 0.9375 | 0.8610 | 0.8200 | 0.8378 | 0.9358 |
65
+ | 0.0799 | 6.0 | 540 | 0.2579 | 0.9343 | 0.8528 | 0.7977 | 0.8197 | 0.9317 |
66
+ | 0.0481 | 7.0 | 630 | 0.3494 | 0.9223 | 0.7926 | 0.8252 | 0.8064 | 0.9247 |
67
+ | 0.0406 | 8.0 | 720 | 0.3154 | 0.9368 | 0.8591 | 0.7986 | 0.8227 | 0.9341 |
68
+ | 0.032 | 9.0 | 810 | 0.3219 | 0.9305 | 0.8238 | 0.8153 | 0.8194 | 0.9301 |
69
+ | 0.0333 | 10.0 | 900 | 0.3787 | 0.9286 | 0.8387 | 0.8048 | 0.8198 | 0.9270 |
70
+ | 0.0278 | 11.0 | 990 | 0.3914 | 0.9311 | 0.8432 | 0.7948 | 0.8148 | 0.9288 |
71
+ | 0.0165 | 12.0 | 1080 | 0.4155 | 0.9318 | 0.8627 | 0.7830 | 0.8120 | 0.9282 |
72
+ | 0.0126 | 13.0 | 1170 | 0.4029 | 0.9368 | 0.8550 | 0.8161 | 0.8328 | 0.9352 |
73
+ | 0.0133 | 14.0 | 1260 | 0.4398 | 0.9324 | 0.8460 | 0.7915 | 0.8134 | 0.9297 |
74
+ | 0.01 | 15.0 | 1350 | 0.4571 | 0.9318 | 0.8347 | 0.7913 | 0.8094 | 0.9294 |
75
+ | 0.008 | 16.0 | 1440 | 0.4685 | 0.9299 | 0.8303 | 0.7899 | 0.8070 | 0.9276 |
76
+ | 0.0058 | 17.0 | 1530 | 0.4846 | 0.9318 | 0.8403 | 0.7954 | 0.8142 | 0.9295 |
77
+ | 0.0022 | 18.0 | 1620 | 0.4905 | 0.9280 | 0.8249 | 0.7928 | 0.8068 | 0.9262 |
78
+ | 0.0038 | 19.0 | 1710 | 0.5043 | 0.9299 | 0.8272 | 0.7897 | 0.8057 | 0.9277 |
79
+ | 0.0015 | 20.0 | 1800 | 0.4987 | 0.9286 | 0.8226 | 0.7931 | 0.8061 | 0.9269 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.55.0
85
+ - Pytorch 2.7.0+cu126
86
+ - Datasets 4.0.0
87
+ - Tokenizers 0.21.4
classification_report_test.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ precision recall f1-score support
2
+
3
+ negative 0.91 0.95 0.93 1409
4
+ neutral 0.57 0.39 0.46 167
5
+ positive 0.94 0.93 0.94 1590
6
+
7
+ accuracy 0.91 3166
8
+ macro avg 0.80 0.76 0.78 3166
9
+ weighted avg 0.91 0.91 0.91 3166
10
+
11
+ Confusion matrix:
12
+ [[1339 23 47]
13
+ [ 51 65 51]
14
+ [ 79 27 1484]]
confusion_matrix_test.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,negative,neutral,positive
2
+ negative,1339,23,47
3
+ neutral,51,65,51
4
+ positive,79,27,1484
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:734ba6c564edc330d99b7dd0078209d5fd24c0376bde063db34c7bd8f2ccc094
3
  size 669458436
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81a404a4d6ea0bad2f2f56dd2fc62eac8f49ed4d93f0e2536278cd5ec2360986
3
  size 669458436