bert-base-multilingual-uncased-sentiment_v3

This model is a fine-tuned version of nlptown/bert-base-multilingual-uncased-sentiment on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4987
  • Accuracy: 0.9286
  • Precision Macro: 0.8226
  • Recall Macro: 0.7931
  • F1 Macro: 0.8061
  • F1 Weighted: 0.9269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.3933 1.0 90 0.2349 0.9292 0.8484 0.7197 0.7474 0.9202
0.2051 2.0 180 0.2166 0.9236 0.8134 0.7619 0.7811 0.9199
0.1494 3.0 270 0.2369 0.9362 0.8619 0.7775 0.8072 0.9321
0.1233 4.0 360 0.2290 0.9343 0.8660 0.7894 0.8176 0.9309
0.0838 5.0 450 0.2490 0.9375 0.8610 0.8200 0.8378 0.9358
0.0799 6.0 540 0.2579 0.9343 0.8528 0.7977 0.8197 0.9317
0.0481 7.0 630 0.3494 0.9223 0.7926 0.8252 0.8064 0.9247
0.0406 8.0 720 0.3154 0.9368 0.8591 0.7986 0.8227 0.9341
0.032 9.0 810 0.3219 0.9305 0.8238 0.8153 0.8194 0.9301
0.0333 10.0 900 0.3787 0.9286 0.8387 0.8048 0.8198 0.9270
0.0278 11.0 990 0.3914 0.9311 0.8432 0.7948 0.8148 0.9288
0.0165 12.0 1080 0.4155 0.9318 0.8627 0.7830 0.8120 0.9282
0.0126 13.0 1170 0.4029 0.9368 0.8550 0.8161 0.8328 0.9352
0.0133 14.0 1260 0.4398 0.9324 0.8460 0.7915 0.8134 0.9297
0.01 15.0 1350 0.4571 0.9318 0.8347 0.7913 0.8094 0.9294
0.008 16.0 1440 0.4685 0.9299 0.8303 0.7899 0.8070 0.9276
0.0058 17.0 1530 0.4846 0.9318 0.8403 0.7954 0.8142 0.9295
0.0022 18.0 1620 0.4905 0.9280 0.8249 0.7928 0.8068 0.9262
0.0038 19.0 1710 0.5043 0.9299 0.8272 0.7897 0.8057 0.9277
0.0015 20.0 1800 0.4987 0.9286 0.8226 0.7931 0.8061 0.9269

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
14
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aiface/bert-base-multilingual-uncased-sentiment_v3

Finetuned
(30)
this model