bert-base-multilingual-uncased-sentiment_v3
This model is a fine-tuned version of nlptown/bert-base-multilingual-uncased-sentiment on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4987
- Accuracy: 0.9286
- Precision Macro: 0.8226
- Recall Macro: 0.7931
- F1 Macro: 0.8061
- F1 Weighted: 0.9269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|
0.3933 | 1.0 | 90 | 0.2349 | 0.9292 | 0.8484 | 0.7197 | 0.7474 | 0.9202 |
0.2051 | 2.0 | 180 | 0.2166 | 0.9236 | 0.8134 | 0.7619 | 0.7811 | 0.9199 |
0.1494 | 3.0 | 270 | 0.2369 | 0.9362 | 0.8619 | 0.7775 | 0.8072 | 0.9321 |
0.1233 | 4.0 | 360 | 0.2290 | 0.9343 | 0.8660 | 0.7894 | 0.8176 | 0.9309 |
0.0838 | 5.0 | 450 | 0.2490 | 0.9375 | 0.8610 | 0.8200 | 0.8378 | 0.9358 |
0.0799 | 6.0 | 540 | 0.2579 | 0.9343 | 0.8528 | 0.7977 | 0.8197 | 0.9317 |
0.0481 | 7.0 | 630 | 0.3494 | 0.9223 | 0.7926 | 0.8252 | 0.8064 | 0.9247 |
0.0406 | 8.0 | 720 | 0.3154 | 0.9368 | 0.8591 | 0.7986 | 0.8227 | 0.9341 |
0.032 | 9.0 | 810 | 0.3219 | 0.9305 | 0.8238 | 0.8153 | 0.8194 | 0.9301 |
0.0333 | 10.0 | 900 | 0.3787 | 0.9286 | 0.8387 | 0.8048 | 0.8198 | 0.9270 |
0.0278 | 11.0 | 990 | 0.3914 | 0.9311 | 0.8432 | 0.7948 | 0.8148 | 0.9288 |
0.0165 | 12.0 | 1080 | 0.4155 | 0.9318 | 0.8627 | 0.7830 | 0.8120 | 0.9282 |
0.0126 | 13.0 | 1170 | 0.4029 | 0.9368 | 0.8550 | 0.8161 | 0.8328 | 0.9352 |
0.0133 | 14.0 | 1260 | 0.4398 | 0.9324 | 0.8460 | 0.7915 | 0.8134 | 0.9297 |
0.01 | 15.0 | 1350 | 0.4571 | 0.9318 | 0.8347 | 0.7913 | 0.8094 | 0.9294 |
0.008 | 16.0 | 1440 | 0.4685 | 0.9299 | 0.8303 | 0.7899 | 0.8070 | 0.9276 |
0.0058 | 17.0 | 1530 | 0.4846 | 0.9318 | 0.8403 | 0.7954 | 0.8142 | 0.9295 |
0.0022 | 18.0 | 1620 | 0.4905 | 0.9280 | 0.8249 | 0.7928 | 0.8068 | 0.9262 |
0.0038 | 19.0 | 1710 | 0.5043 | 0.9299 | 0.8272 | 0.7897 | 0.8057 | 0.9277 |
0.0015 | 20.0 | 1800 | 0.4987 | 0.9286 | 0.8226 | 0.7931 | 0.8061 | 0.9269 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support