base_model: jonathandinu/face-parsing | |
library_name: transformers.js | |
pipeline_tag: image-segmentation | |
https://huggingface.co/jonathandinu/face-parsing with ONNX weights to be compatible with Transformers.js. | |
## Usage (Transformers.js) | |
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: | |
```bash | |
npm i @huggingface/transformers | |
``` | |
**Example:** Face segmentation with `Xenova/face-parsing`. | |
```js | |
import { pipeline } from '@huggingface/transformers'; | |
const segmenter = await pipeline('image-segmentation', 'Xenova/face-parsing'); | |
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman.jpg'; | |
const output = await segmenter(url); | |
console.log(output) | |
// [ | |
// { | |
// score: null, | |
// label: 'background', | |
// mask: RawImage { ... } | |
// }, | |
// { | |
// score: null, | |
// label: 'skin.png', | |
// mask: RawImage { ... } | |
// }, | |
// ... | |
// } | |
// ] | |
``` | |
You can visualize the outputs with: | |
```js | |
for (const l of output) { | |
l.mask.save(`${l.label}.png`); | |
} | |
``` | |
 | |
--- | |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |