|
import torch |
|
import numpy as np |
|
|
|
from typing import Any, Callable, Dict, Tuple, List, Optional, Union |
|
from diffusers import FluxTransformer2DModel |
|
from diffusers.configuration_utils import register_to_config |
|
from diffusers.utils import logging, USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def drop_token(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0], x.shape[1], 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
|
|
class FluxTransformer2DModelWithSigLIP(FluxTransformer2DModel): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 1, |
|
in_channels: int = 64, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 19, |
|
num_single_layers: int = 38, |
|
attention_head_dim: int = 128, |
|
num_attention_heads: int = 24, |
|
joint_attention_dim: int = 4096, |
|
pooled_projection_dim: int = 768, |
|
guidance_embeds: bool = False, |
|
axes_dims_rope: Tuple[int] = (16, 56, 56), |
|
siglip_channels: Optional[int] = None, |
|
drop_token_prob: float = 0., |
|
): |
|
super().__init__( |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
num_layers=num_layers, |
|
num_single_layers=num_single_layers, |
|
attention_head_dim=attention_head_dim, |
|
num_attention_heads=num_attention_heads, |
|
joint_attention_dim=joint_attention_dim, |
|
pooled_projection_dim=pooled_projection_dim, |
|
guidance_embeds=guidance_embeds, |
|
axes_dims_rope=axes_dims_rope, |
|
) |
|
self.drop_token_prob = drop_token_prob |
|
if siglip_channels is not None: |
|
self.init_siglip_embed(siglip_channels) |
|
|
|
def init_siglip_embed(self, siglip_channels): |
|
self.siglip_embed = torch.nn.Linear(siglip_channels, self.inner_dim, bias=False) |
|
torch.nn.init.zeros_(self.siglip_embed.weight) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
siglip_tensor: Optional[torch.Tensor] = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_block_samples=None, |
|
controlnet_single_block_samples=None, |
|
return_dict: bool = True, |
|
controlnet_blocks_repeat: bool = False, |
|
) -> Union[torch.Tensor, Transformer2DModelOutput]: |
|
""" |
|
The [`FluxTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): |
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
from the embeddings of input conditions. |
|
timestep ( `torch.LongTensor`): |
|
Used to indicate denoising step. |
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
|
A list of tensors that if specified are added to the residuals of transformer blocks. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
|
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
|
|
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: |
|
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") |
|
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) |
|
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
|
|
if controlnet_blocks_repeat: |
|
hidden_states = ( |
|
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] |
|
) |
|
else: |
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
|
|
|
if siglip_tensor is not None: |
|
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training) |
|
hidden_states = hidden_states + self.siglip_embed(siglip_tensor) |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|
|
def teacache_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_block_samples=None, |
|
controlnet_single_block_samples=None, |
|
return_dict: bool = True, |
|
controlnet_blocks_repeat: bool = False, |
|
siglip_tensor: Optional[torch.Tensor] = None, |
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
""" |
|
The [`FluxTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): |
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
from the embeddings of input conditions. |
|
timestep ( `torch.LongTensor`): |
|
Used to indicate denoising step. |
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
|
A list of tensors that if specified are added to the residuals of transformer blocks. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
batch_size, seq_len, channels = hidden_states.shape |
|
device, dtype = hidden_states.device, hidden_states.dtype |
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
|
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
|
|
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: |
|
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") |
|
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) |
|
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) |
|
|
|
if self.enable_teacache: |
|
inp = hidden_states.clone() |
|
temb_ = temb.clone() |
|
modulated_inp, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.transformer_blocks[0].norm1(inp, emb=temb_) |
|
if self.cnt == 0 or self.cnt == self.num_steps - 1: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
else: |
|
coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01] |
|
rescale_func = np.poly1d(coefficients) |
|
|
|
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) |
|
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: |
|
should_calc = False |
|
else: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
self.previous_modulated_input = modulated_inp |
|
self.cnt += 1 |
|
if self.cnt == self.num_steps: |
|
self.cnt = 0 |
|
|
|
if self.enable_teacache: |
|
if not should_calc: |
|
hidden_states += self.previous_residual |
|
else: |
|
ori_hidden_states = hidden_states.clone() |
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
|
|
if controlnet_blocks_repeat: |
|
hidden_states = ( |
|
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] |
|
) |
|
else: |
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
|
|
|
if siglip_tensor is not None: |
|
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training) |
|
hidden_states = hidden_states + self.siglip_embed(siglip_tensor) |
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
self.previous_residual = hidden_states - ori_hidden_states |
|
else: |
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
|
|
if controlnet_blocks_repeat: |
|
hidden_states = ( |
|
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] |
|
) |
|
else: |
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
|
if siglip_tensor is not None: |
|
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training) |
|
hidden_states = hidden_states + self.siglip_embed(siglip_tensor) |
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|
|
class FluxPipelineWithSigLIP(FluxPipeline): |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
siglip_tensor: torch.Tensor, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
true_cfg_scale: float = 1.0, |
|
true_cfg_scale_2: float = 1.0, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_ip_adapter_image: Optional[PipelineImageInput] = None, |
|
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is |
|
not greater than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
true_cfg_scale (`float`, *optional*, defaults to 1.0): |
|
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 3.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
negative_ip_adapter_image: |
|
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
assert true_cfg_scale == true_cfg_scale_2 |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._current_timestep = None |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
has_neg_prompt = negative_prompt is not None or ( |
|
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None |
|
) |
|
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
assert do_true_cfg |
|
( |
|
negative_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
_, |
|
) = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
self.scheduler.config.get("base_shift", 0.5), |
|
self.scheduler.config.get("max_shift", 1.15), |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0] * 2) |
|
else: |
|
guidance = None |
|
|
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( |
|
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None |
|
): |
|
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters |
|
|
|
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( |
|
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None |
|
): |
|
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) |
|
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {} |
|
|
|
image_embeds = None |
|
negative_image_embeds = None |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: |
|
negative_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
negative_ip_adapter_image, |
|
negative_ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
self._current_timestep = t |
|
if image_embeds is not None: |
|
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds |
|
|
|
timestep = t.expand(latents.shape[0] * 2).to(latents.dtype) |
|
|
|
batch_noise_pred = self.transformer( |
|
hidden_states=torch.cat([latents, latents], dim=0), |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=torch.cat([pooled_prompt_embeds, negative_pooled_prompt_embeds.expand_as(pooled_prompt_embeds)], dim=0), |
|
encoder_hidden_states=torch.cat([prompt_embeds, negative_prompt_embeds.expand_as(prompt_embeds)], dim=0), |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
siglip_tensor=torch.cat([siglip_tensor, torch.zeros_like(siglip_tensor)], dim=0), |
|
return_dict=False, |
|
)[0] |
|
noise_pred, neg_noise_pred = batch_noise_pred.chunk(2) |
|
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
self._current_timestep = None |
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|