Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +0 -0
- config.json +70 -0
- configuration_xomni.py +25 -0
- diffusers/config.json +21 -0
- diffusers/diffusion_pytorch_model.safetensors +3 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +445 -0
- modeling_siglip_flux.py +841 -0
- modeling_siglip_tokenizer.py +231 -0
- modeling_vit.py +699 -0
- modeling_xomni.py +315 -0
- special_tokens_map.json +0 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- vit/siglip_vq.pt +3 -0
- vit/vit_g.pth +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XOmniForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_xomni.XOmniConfig",
|
8 |
+
"AutoModel": "modeling_xomni.XOmniModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_xomni.XOmniForCausalLM"
|
10 |
+
},
|
11 |
+
"eos_token_id": 151643,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 3584,
|
14 |
+
"image_vocab_size": 16384,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 18944,
|
17 |
+
"max_position_embeddings": 8192,
|
18 |
+
"max_window_layers": 28,
|
19 |
+
"mm_special_tokens": [
|
20 |
+
"<SOM>",
|
21 |
+
"<EOM>",
|
22 |
+
"<IMAGE>"
|
23 |
+
],
|
24 |
+
"mm_vocab_size": 16448,
|
25 |
+
"model_type": "x-omni",
|
26 |
+
"num_attention_heads": 28,
|
27 |
+
"num_hidden_layers": 36,
|
28 |
+
"num_key_value_heads": 4,
|
29 |
+
"num_mm_adap_layers": 4,
|
30 |
+
"num_mm_head_layers": 4,
|
31 |
+
"pad_token_id": 151643,
|
32 |
+
"rms_norm_eps": 1e-06,
|
33 |
+
"rope_scaling": null,
|
34 |
+
"rope_theta": 1000000.0,
|
35 |
+
"sliding_window": null,
|
36 |
+
"tie_word_embeddings": false,
|
37 |
+
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.52.0",
|
39 |
+
"use_cache": true,
|
40 |
+
"use_sliding_window": false,
|
41 |
+
"vision_config":{
|
42 |
+
"transform": {
|
43 |
+
"short_size": 384,
|
44 |
+
"long_size": 1152,
|
45 |
+
"patch_size": 16,
|
46 |
+
"random_ratio": null,
|
47 |
+
"min_short_size": 128,
|
48 |
+
"max_aspect_ratio": 3.0,
|
49 |
+
"filtering": false
|
50 |
+
},
|
51 |
+
"encoder": {
|
52 |
+
"siglip_name": "siglip2_giant_patch16_384",
|
53 |
+
"siglip_path": "vit/vit_g.pth",
|
54 |
+
"projector_path": "vit/siglip_vq.pt",
|
55 |
+
"with_norm": true,
|
56 |
+
"z_channels": 1536,
|
57 |
+
"codebook_size": 16384,
|
58 |
+
"codebook_dim": 2048
|
59 |
+
},
|
60 |
+
"decoder": {
|
61 |
+
"model_path": "diffusers",
|
62 |
+
"num_inference_steps": 28,
|
63 |
+
"cfg_scale": 1.5,
|
64 |
+
"cfg_scale_2": 1.5,
|
65 |
+
"upscale_factor": 16
|
66 |
+
},
|
67 |
+
"dtype": "bfloat16"
|
68 |
+
},
|
69 |
+
"vocab_size": 151936
|
70 |
+
}
|
configuration_xomni.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, Qwen2Config
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
|
5 |
+
class XOmniConfig(Qwen2Config):
|
6 |
+
model_type = "x-omni"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
num_mm_adap_layers: int = 4,
|
11 |
+
num_mm_head_layers: int = 4,
|
12 |
+
mm_vocab_size: int = 16448,
|
13 |
+
image_vocab_size: int = 16384,
|
14 |
+
mm_special_tokens: Tuple[str] = ('<SOM>', '<EOM>', '<IMAGE>'),
|
15 |
+
**kwargs,
|
16 |
+
):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.num_mm_adap_layers = num_mm_adap_layers
|
19 |
+
self.num_mm_head_layers = num_mm_head_layers
|
20 |
+
self.mm_vocab_size = mm_vocab_size
|
21 |
+
self.image_vocab_size = image_vocab_size
|
22 |
+
self.mm_special_tokens = mm_special_tokens
|
23 |
+
|
24 |
+
|
25 |
+
AutoConfig.register("x-omni", XOmniConfig)
|
diffusers/config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_diffusers_version": "0.33.0.dev0",
|
3 |
+
"attention_head_dim": 128,
|
4 |
+
"axes_dims_rope": [
|
5 |
+
16,
|
6 |
+
56,
|
7 |
+
56
|
8 |
+
],
|
9 |
+
"drop_token_prob": 0.0,
|
10 |
+
"guidance_embeds": true,
|
11 |
+
"hidden_size": null,
|
12 |
+
"in_channels": 64,
|
13 |
+
"joint_attention_dim": 4096,
|
14 |
+
"num_attention_heads": 24,
|
15 |
+
"num_layers": 19,
|
16 |
+
"num_single_layers": 38,
|
17 |
+
"out_channels": null,
|
18 |
+
"patch_size": 1,
|
19 |
+
"pooled_projection_dim": 768,
|
20 |
+
"siglip_channels": null
|
21 |
+
}
|
diffusers/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9ae32ab1c024a19aaf050f0b2eb38bb8ea069b2298e922cd8d2d8328445387e
|
3 |
+
size 23812392896
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.52.0"
|
4 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a3201f2f35a4f3176430b949a6d8c90913eb2bf0b0398ee896fcbcf24bdab84
|
3 |
+
size 4994657152
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3918a1e7bbba2b804e6ea9c5298f3b6f419ca1093efbaee3ccf20880abc07c0c
|
3 |
+
size 4932751016
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ba948766a1cd1e285aba59caa3abfabb7a8cce71743366c3b0f4f3434a6655b
|
3 |
+
size 4991495904
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cd5fe02d25527abb4f4f47d6d74b230554a6cf931062496f49d3cd202db2bd1
|
3 |
+
size 4275274456
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 19194128384
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"mm_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
440 |
+
"model.lm_embed_tokens.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"model.lm_norm.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"model.mm_embed_tokens.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"model.mm_norm.weight": "model-00004-of-00004.safetensors"
|
444 |
+
}
|
445 |
+
}
|
modeling_siglip_flux.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from typing import Any, Callable, Dict, Tuple, List, Optional, Union
|
5 |
+
from diffusers import FluxTransformer2DModel
|
6 |
+
from diffusers.configuration_utils import register_to_config
|
7 |
+
from diffusers.utils import logging, USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers
|
8 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
9 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps
|
10 |
+
from diffusers.image_processor import PipelineImageInput
|
11 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
14 |
+
|
15 |
+
|
16 |
+
def drop_token(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
17 |
+
if drop_prob == 0. or not training:
|
18 |
+
return x
|
19 |
+
keep_prob = 1 - drop_prob
|
20 |
+
shape = (x.shape[0], x.shape[1], 1)
|
21 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
22 |
+
if keep_prob > 0.0 and scale_by_keep:
|
23 |
+
random_tensor.div_(keep_prob)
|
24 |
+
return x * random_tensor
|
25 |
+
|
26 |
+
|
27 |
+
class FluxTransformer2DModelWithSigLIP(FluxTransformer2DModel):
|
28 |
+
@register_to_config
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
patch_size: int = 1,
|
32 |
+
in_channels: int = 64,
|
33 |
+
out_channels: Optional[int] = None,
|
34 |
+
num_layers: int = 19,
|
35 |
+
num_single_layers: int = 38,
|
36 |
+
attention_head_dim: int = 128,
|
37 |
+
num_attention_heads: int = 24,
|
38 |
+
joint_attention_dim: int = 4096,
|
39 |
+
pooled_projection_dim: int = 768,
|
40 |
+
guidance_embeds: bool = False,
|
41 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
42 |
+
siglip_channels: Optional[int] = None,
|
43 |
+
drop_token_prob: float = 0.,
|
44 |
+
):
|
45 |
+
super().__init__(
|
46 |
+
patch_size=patch_size,
|
47 |
+
in_channels=in_channels,
|
48 |
+
out_channels=out_channels,
|
49 |
+
num_layers=num_layers,
|
50 |
+
num_single_layers=num_single_layers,
|
51 |
+
attention_head_dim=attention_head_dim,
|
52 |
+
num_attention_heads=num_attention_heads,
|
53 |
+
joint_attention_dim=joint_attention_dim,
|
54 |
+
pooled_projection_dim=pooled_projection_dim,
|
55 |
+
guidance_embeds=guidance_embeds,
|
56 |
+
axes_dims_rope=axes_dims_rope,
|
57 |
+
)
|
58 |
+
self.drop_token_prob = drop_token_prob
|
59 |
+
if siglip_channels is not None:
|
60 |
+
self.init_siglip_embed(siglip_channels)
|
61 |
+
|
62 |
+
def init_siglip_embed(self, siglip_channels):
|
63 |
+
self.siglip_embed = torch.nn.Linear(siglip_channels, self.inner_dim, bias=False)
|
64 |
+
torch.nn.init.zeros_(self.siglip_embed.weight)
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
hidden_states: torch.Tensor,
|
69 |
+
encoder_hidden_states: torch.Tensor = None,
|
70 |
+
pooled_projections: torch.Tensor = None,
|
71 |
+
timestep: torch.LongTensor = None,
|
72 |
+
img_ids: torch.Tensor = None,
|
73 |
+
txt_ids: torch.Tensor = None,
|
74 |
+
guidance: torch.Tensor = None,
|
75 |
+
siglip_tensor: Optional[torch.Tensor] = None,
|
76 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
77 |
+
controlnet_block_samples=None,
|
78 |
+
controlnet_single_block_samples=None,
|
79 |
+
return_dict: bool = True,
|
80 |
+
controlnet_blocks_repeat: bool = False,
|
81 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
82 |
+
"""
|
83 |
+
The [`FluxTransformer2DModel`] forward method.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
87 |
+
Input `hidden_states`.
|
88 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
89 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
90 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
91 |
+
from the embeddings of input conditions.
|
92 |
+
timestep ( `torch.LongTensor`):
|
93 |
+
Used to indicate denoising step.
|
94 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
95 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
96 |
+
joint_attention_kwargs (`dict`, *optional*):
|
97 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
98 |
+
`self.processor` in
|
99 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
100 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
101 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
102 |
+
tuple.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
106 |
+
`tuple` where the first element is the sample tensor.
|
107 |
+
"""
|
108 |
+
if joint_attention_kwargs is not None:
|
109 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
110 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
111 |
+
else:
|
112 |
+
lora_scale = 1.0
|
113 |
+
|
114 |
+
if USE_PEFT_BACKEND:
|
115 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
116 |
+
scale_lora_layers(self, lora_scale)
|
117 |
+
else:
|
118 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
119 |
+
logger.warning(
|
120 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
121 |
+
)
|
122 |
+
|
123 |
+
hidden_states = self.x_embedder(hidden_states)
|
124 |
+
|
125 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
126 |
+
if guidance is not None:
|
127 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
128 |
+
else:
|
129 |
+
guidance = None
|
130 |
+
|
131 |
+
temb = (
|
132 |
+
self.time_text_embed(timestep, pooled_projections)
|
133 |
+
if guidance is None
|
134 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
135 |
+
)
|
136 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
137 |
+
|
138 |
+
if txt_ids.ndim == 3:
|
139 |
+
logger.warning(
|
140 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
141 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
142 |
+
)
|
143 |
+
txt_ids = txt_ids[0]
|
144 |
+
if img_ids.ndim == 3:
|
145 |
+
logger.warning(
|
146 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
147 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
148 |
+
)
|
149 |
+
img_ids = img_ids[0]
|
150 |
+
|
151 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
152 |
+
image_rotary_emb = self.pos_embed(ids)
|
153 |
+
|
154 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
155 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
156 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
157 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
158 |
+
|
159 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
160 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
161 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
162 |
+
block,
|
163 |
+
hidden_states,
|
164 |
+
encoder_hidden_states,
|
165 |
+
temb,
|
166 |
+
image_rotary_emb,
|
167 |
+
)
|
168 |
+
|
169 |
+
else:
|
170 |
+
encoder_hidden_states, hidden_states = block(
|
171 |
+
hidden_states=hidden_states,
|
172 |
+
encoder_hidden_states=encoder_hidden_states,
|
173 |
+
temb=temb,
|
174 |
+
image_rotary_emb=image_rotary_emb,
|
175 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
176 |
+
)
|
177 |
+
|
178 |
+
# controlnet residual
|
179 |
+
if controlnet_block_samples is not None:
|
180 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
181 |
+
interval_control = int(np.ceil(interval_control))
|
182 |
+
# For Xlabs ControlNet.
|
183 |
+
if controlnet_blocks_repeat:
|
184 |
+
hidden_states = (
|
185 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
189 |
+
|
190 |
+
if siglip_tensor is not None:
|
191 |
+
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training)
|
192 |
+
hidden_states = hidden_states + self.siglip_embed(siglip_tensor)
|
193 |
+
|
194 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
195 |
+
|
196 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
197 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
198 |
+
hidden_states = self._gradient_checkpointing_func(
|
199 |
+
block,
|
200 |
+
hidden_states,
|
201 |
+
temb,
|
202 |
+
image_rotary_emb,
|
203 |
+
)
|
204 |
+
|
205 |
+
else:
|
206 |
+
hidden_states = block(
|
207 |
+
hidden_states=hidden_states,
|
208 |
+
temb=temb,
|
209 |
+
image_rotary_emb=image_rotary_emb,
|
210 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
211 |
+
)
|
212 |
+
|
213 |
+
# controlnet residual
|
214 |
+
if controlnet_single_block_samples is not None:
|
215 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
216 |
+
interval_control = int(np.ceil(interval_control))
|
217 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = (
|
218 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
219 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
220 |
+
)
|
221 |
+
|
222 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
223 |
+
|
224 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
225 |
+
output = self.proj_out(hidden_states)
|
226 |
+
|
227 |
+
if USE_PEFT_BACKEND:
|
228 |
+
# remove `lora_scale` from each PEFT layer
|
229 |
+
unscale_lora_layers(self, lora_scale)
|
230 |
+
|
231 |
+
if not return_dict:
|
232 |
+
return (output,)
|
233 |
+
|
234 |
+
return Transformer2DModelOutput(sample=output)
|
235 |
+
|
236 |
+
|
237 |
+
def teacache_forward(
|
238 |
+
self,
|
239 |
+
hidden_states: torch.Tensor,
|
240 |
+
encoder_hidden_states: torch.Tensor = None,
|
241 |
+
pooled_projections: torch.Tensor = None,
|
242 |
+
timestep: torch.LongTensor = None,
|
243 |
+
img_ids: torch.Tensor = None,
|
244 |
+
txt_ids: torch.Tensor = None,
|
245 |
+
guidance: torch.Tensor = None,
|
246 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
247 |
+
controlnet_block_samples=None,
|
248 |
+
controlnet_single_block_samples=None,
|
249 |
+
return_dict: bool = True,
|
250 |
+
controlnet_blocks_repeat: bool = False,
|
251 |
+
siglip_tensor: Optional[torch.Tensor] = None,
|
252 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
253 |
+
"""
|
254 |
+
The [`FluxTransformer2DModel`] forward method.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
258 |
+
Input `hidden_states`.
|
259 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
260 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
261 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
262 |
+
from the embeddings of input conditions.
|
263 |
+
timestep ( `torch.LongTensor`):
|
264 |
+
Used to indicate denoising step.
|
265 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
266 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
267 |
+
joint_attention_kwargs (`dict`, *optional*):
|
268 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
269 |
+
`self.processor` in
|
270 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
271 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
272 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
273 |
+
tuple.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
277 |
+
`tuple` where the first element is the sample tensor.
|
278 |
+
"""
|
279 |
+
if joint_attention_kwargs is not None:
|
280 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
281 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
282 |
+
else:
|
283 |
+
lora_scale = 1.0
|
284 |
+
|
285 |
+
if USE_PEFT_BACKEND:
|
286 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
287 |
+
scale_lora_layers(self, lora_scale)
|
288 |
+
else:
|
289 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
290 |
+
logger.warning(
|
291 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
292 |
+
)
|
293 |
+
|
294 |
+
batch_size, seq_len, channels = hidden_states.shape
|
295 |
+
device, dtype = hidden_states.device, hidden_states.dtype
|
296 |
+
hidden_states = self.x_embedder(hidden_states)
|
297 |
+
|
298 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
299 |
+
if guidance is not None:
|
300 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
301 |
+
else:
|
302 |
+
guidance = None
|
303 |
+
|
304 |
+
temb = (
|
305 |
+
self.time_text_embed(timestep, pooled_projections)
|
306 |
+
if guidance is None
|
307 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
308 |
+
)
|
309 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
310 |
+
|
311 |
+
if txt_ids.ndim == 3:
|
312 |
+
logger.warning(
|
313 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
314 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
315 |
+
)
|
316 |
+
txt_ids = txt_ids[0]
|
317 |
+
if img_ids.ndim == 3:
|
318 |
+
logger.warning(
|
319 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
320 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
321 |
+
)
|
322 |
+
img_ids = img_ids[0]
|
323 |
+
|
324 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
325 |
+
image_rotary_emb = self.pos_embed(ids)
|
326 |
+
|
327 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
328 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
329 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
330 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
331 |
+
|
332 |
+
if self.enable_teacache:
|
333 |
+
inp = hidden_states.clone()
|
334 |
+
temb_ = temb.clone()
|
335 |
+
modulated_inp, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.transformer_blocks[0].norm1(inp, emb=temb_)
|
336 |
+
if self.cnt == 0 or self.cnt == self.num_steps - 1:
|
337 |
+
should_calc = True
|
338 |
+
self.accumulated_rel_l1_distance = 0
|
339 |
+
else:
|
340 |
+
coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01]
|
341 |
+
rescale_func = np.poly1d(coefficients)
|
342 |
+
# rescale_func = Polynomial(coefficients.reverse())
|
343 |
+
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
344 |
+
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
345 |
+
should_calc = False
|
346 |
+
else:
|
347 |
+
should_calc = True
|
348 |
+
self.accumulated_rel_l1_distance = 0
|
349 |
+
self.previous_modulated_input = modulated_inp
|
350 |
+
self.cnt += 1
|
351 |
+
if self.cnt == self.num_steps:
|
352 |
+
self.cnt = 0
|
353 |
+
|
354 |
+
if self.enable_teacache:
|
355 |
+
if not should_calc:
|
356 |
+
hidden_states += self.previous_residual
|
357 |
+
else:
|
358 |
+
ori_hidden_states = hidden_states.clone()
|
359 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
360 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
361 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
362 |
+
block,
|
363 |
+
hidden_states,
|
364 |
+
encoder_hidden_states,
|
365 |
+
temb,
|
366 |
+
image_rotary_emb,
|
367 |
+
)
|
368 |
+
|
369 |
+
else:
|
370 |
+
encoder_hidden_states, hidden_states = block(
|
371 |
+
hidden_states=hidden_states,
|
372 |
+
encoder_hidden_states=encoder_hidden_states,
|
373 |
+
temb=temb,
|
374 |
+
image_rotary_emb=image_rotary_emb,
|
375 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
376 |
+
)
|
377 |
+
|
378 |
+
# controlnet residual
|
379 |
+
if controlnet_block_samples is not None:
|
380 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
381 |
+
interval_control = int(np.ceil(interval_control))
|
382 |
+
# For Xlabs ControlNet.
|
383 |
+
if controlnet_blocks_repeat:
|
384 |
+
hidden_states = (
|
385 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
389 |
+
|
390 |
+
if siglip_tensor is not None:
|
391 |
+
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training)
|
392 |
+
hidden_states = hidden_states + self.siglip_embed(siglip_tensor)
|
393 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
394 |
+
|
395 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
396 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
397 |
+
hidden_states = self._gradient_checkpointing_func(
|
398 |
+
block,
|
399 |
+
hidden_states,
|
400 |
+
temb,
|
401 |
+
image_rotary_emb,
|
402 |
+
)
|
403 |
+
|
404 |
+
else:
|
405 |
+
hidden_states = block(
|
406 |
+
hidden_states=hidden_states,
|
407 |
+
temb=temb,
|
408 |
+
image_rotary_emb=image_rotary_emb,
|
409 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
410 |
+
)
|
411 |
+
|
412 |
+
# controlnet residual
|
413 |
+
if controlnet_single_block_samples is not None:
|
414 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
415 |
+
interval_control = int(np.ceil(interval_control))
|
416 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = (
|
417 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
418 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
419 |
+
)
|
420 |
+
|
421 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
422 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
423 |
+
else:
|
424 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
425 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
426 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
427 |
+
block,
|
428 |
+
hidden_states,
|
429 |
+
encoder_hidden_states,
|
430 |
+
temb,
|
431 |
+
image_rotary_emb,
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
encoder_hidden_states, hidden_states = block(
|
435 |
+
hidden_states=hidden_states,
|
436 |
+
encoder_hidden_states=encoder_hidden_states,
|
437 |
+
temb=temb,
|
438 |
+
image_rotary_emb=image_rotary_emb,
|
439 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
440 |
+
)
|
441 |
+
|
442 |
+
# controlnet residual
|
443 |
+
if controlnet_block_samples is not None:
|
444 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
445 |
+
interval_control = int(np.ceil(interval_control))
|
446 |
+
# For Xlabs ControlNet.
|
447 |
+
if controlnet_blocks_repeat:
|
448 |
+
hidden_states = (
|
449 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
450 |
+
)
|
451 |
+
else:
|
452 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
453 |
+
if siglip_tensor is not None:
|
454 |
+
siglip_tensor = drop_token(siglip_tensor, self.drop_token_prob, training=self.training)
|
455 |
+
hidden_states = hidden_states + self.siglip_embed(siglip_tensor)
|
456 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
457 |
+
|
458 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
459 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
460 |
+
hidden_states = self._gradient_checkpointing_func(
|
461 |
+
block,
|
462 |
+
hidden_states,
|
463 |
+
temb,
|
464 |
+
image_rotary_emb,
|
465 |
+
)
|
466 |
+
|
467 |
+
else:
|
468 |
+
hidden_states = block(
|
469 |
+
hidden_states=hidden_states,
|
470 |
+
temb=temb,
|
471 |
+
image_rotary_emb=image_rotary_emb,
|
472 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
473 |
+
)
|
474 |
+
|
475 |
+
# controlnet residual
|
476 |
+
if controlnet_single_block_samples is not None:
|
477 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
478 |
+
interval_control = int(np.ceil(interval_control))
|
479 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...] = (
|
480 |
+
hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
481 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
482 |
+
)
|
483 |
+
|
484 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
485 |
+
|
486 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
487 |
+
output = self.proj_out(hidden_states)
|
488 |
+
|
489 |
+
if USE_PEFT_BACKEND:
|
490 |
+
# remove `lora_scale` from each PEFT layer
|
491 |
+
unscale_lora_layers(self, lora_scale)
|
492 |
+
|
493 |
+
if not return_dict:
|
494 |
+
return (output,)
|
495 |
+
|
496 |
+
return Transformer2DModelOutput(sample=output)
|
497 |
+
|
498 |
+
|
499 |
+
class FluxPipelineWithSigLIP(FluxPipeline):
|
500 |
+
|
501 |
+
@torch.no_grad()
|
502 |
+
def __call__(
|
503 |
+
self,
|
504 |
+
siglip_tensor: torch.Tensor,
|
505 |
+
prompt: Union[str, List[str]] = None,
|
506 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
507 |
+
negative_prompt: Union[str, List[str]] = None,
|
508 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
509 |
+
true_cfg_scale: float = 1.0,
|
510 |
+
true_cfg_scale_2: float = 1.0,
|
511 |
+
height: Optional[int] = None,
|
512 |
+
width: Optional[int] = None,
|
513 |
+
num_inference_steps: int = 28,
|
514 |
+
sigmas: Optional[List[float]] = None,
|
515 |
+
guidance_scale: float = 3.5,
|
516 |
+
num_images_per_prompt: Optional[int] = 1,
|
517 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
518 |
+
latents: Optional[torch.FloatTensor] = None,
|
519 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
520 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
521 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
522 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
523 |
+
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
524 |
+
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
525 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
526 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
527 |
+
output_type: Optional[str] = "pil",
|
528 |
+
return_dict: bool = True,
|
529 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
530 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
531 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
532 |
+
max_sequence_length: int = 512,
|
533 |
+
):
|
534 |
+
r"""
|
535 |
+
Function invoked when calling the pipeline for generation.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
prompt (`str` or `List[str]`, *optional*):
|
539 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
540 |
+
instead.
|
541 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
542 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
543 |
+
will be used instead.
|
544 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
545 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
546 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
547 |
+
not greater than `1`).
|
548 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
549 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
550 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
551 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
552 |
+
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
553 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
554 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
555 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
556 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
557 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
558 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
559 |
+
expense of slower inference.
|
560 |
+
sigmas (`List[float]`, *optional*):
|
561 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
562 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
563 |
+
will be used.
|
564 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
565 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
566 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
567 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
568 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
569 |
+
usually at the expense of lower image quality.
|
570 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
571 |
+
The number of images to generate per prompt.
|
572 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
573 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
574 |
+
to make generation deterministic.
|
575 |
+
latents (`torch.FloatTensor`, *optional*):
|
576 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
577 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
578 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
579 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
580 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
581 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
582 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
583 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
584 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
585 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
586 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
587 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
588 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
589 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
590 |
+
negative_ip_adapter_image:
|
591 |
+
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
592 |
+
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
593 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
594 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
595 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
596 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
597 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
598 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
599 |
+
argument.
|
600 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
601 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
602 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
603 |
+
input argument.
|
604 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
605 |
+
The output format of the generate image. Choose between
|
606 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
607 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
608 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
609 |
+
joint_attention_kwargs (`dict`, *optional*):
|
610 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
611 |
+
`self.processor` in
|
612 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
613 |
+
callback_on_step_end (`Callable`, *optional*):
|
614 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
615 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
616 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
617 |
+
`callback_on_step_end_tensor_inputs`.
|
618 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
619 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
620 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
621 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
622 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
623 |
+
|
624 |
+
Examples:
|
625 |
+
|
626 |
+
Returns:
|
627 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
628 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
629 |
+
images.
|
630 |
+
"""
|
631 |
+
assert true_cfg_scale == true_cfg_scale_2
|
632 |
+
|
633 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
634 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
635 |
+
|
636 |
+
# 1. Check inputs. Raise error if not correct
|
637 |
+
self.check_inputs(
|
638 |
+
prompt,
|
639 |
+
prompt_2,
|
640 |
+
height,
|
641 |
+
width,
|
642 |
+
negative_prompt=negative_prompt,
|
643 |
+
negative_prompt_2=negative_prompt_2,
|
644 |
+
prompt_embeds=prompt_embeds,
|
645 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
646 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
647 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
648 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
649 |
+
max_sequence_length=max_sequence_length,
|
650 |
+
)
|
651 |
+
|
652 |
+
self._guidance_scale = guidance_scale
|
653 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
654 |
+
self._current_timestep = None
|
655 |
+
self._interrupt = False
|
656 |
+
|
657 |
+
# 2. Define call parameters
|
658 |
+
if prompt is not None and isinstance(prompt, str):
|
659 |
+
batch_size = 1
|
660 |
+
elif prompt is not None and isinstance(prompt, list):
|
661 |
+
batch_size = len(prompt)
|
662 |
+
else:
|
663 |
+
batch_size = prompt_embeds.shape[0]
|
664 |
+
|
665 |
+
device = self._execution_device
|
666 |
+
|
667 |
+
lora_scale = (
|
668 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
669 |
+
)
|
670 |
+
has_neg_prompt = negative_prompt is not None or (
|
671 |
+
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
672 |
+
)
|
673 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
674 |
+
(
|
675 |
+
prompt_embeds,
|
676 |
+
pooled_prompt_embeds,
|
677 |
+
text_ids,
|
678 |
+
) = self.encode_prompt(
|
679 |
+
prompt=prompt,
|
680 |
+
prompt_2=prompt_2,
|
681 |
+
prompt_embeds=prompt_embeds,
|
682 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
683 |
+
device=device,
|
684 |
+
num_images_per_prompt=num_images_per_prompt,
|
685 |
+
max_sequence_length=max_sequence_length,
|
686 |
+
lora_scale=lora_scale,
|
687 |
+
)
|
688 |
+
assert do_true_cfg
|
689 |
+
(
|
690 |
+
negative_prompt_embeds,
|
691 |
+
negative_pooled_prompt_embeds,
|
692 |
+
_,
|
693 |
+
) = self.encode_prompt(
|
694 |
+
prompt=negative_prompt,
|
695 |
+
prompt_2=negative_prompt_2,
|
696 |
+
prompt_embeds=negative_prompt_embeds,
|
697 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
698 |
+
device=device,
|
699 |
+
num_images_per_prompt=num_images_per_prompt,
|
700 |
+
max_sequence_length=max_sequence_length,
|
701 |
+
lora_scale=lora_scale,
|
702 |
+
)
|
703 |
+
|
704 |
+
# 4. Prepare latent variables
|
705 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
706 |
+
latents, latent_image_ids = self.prepare_latents(
|
707 |
+
batch_size * num_images_per_prompt,
|
708 |
+
num_channels_latents,
|
709 |
+
height,
|
710 |
+
width,
|
711 |
+
prompt_embeds.dtype,
|
712 |
+
device,
|
713 |
+
generator,
|
714 |
+
latents,
|
715 |
+
)
|
716 |
+
|
717 |
+
# 5. Prepare timesteps
|
718 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
719 |
+
image_seq_len = latents.shape[1]
|
720 |
+
mu = calculate_shift(
|
721 |
+
image_seq_len,
|
722 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
723 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
724 |
+
self.scheduler.config.get("base_shift", 0.5),
|
725 |
+
self.scheduler.config.get("max_shift", 1.15),
|
726 |
+
)
|
727 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
728 |
+
self.scheduler,
|
729 |
+
num_inference_steps,
|
730 |
+
device,
|
731 |
+
sigmas=sigmas,
|
732 |
+
mu=mu,
|
733 |
+
)
|
734 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
735 |
+
self._num_timesteps = len(timesteps)
|
736 |
+
|
737 |
+
# handle guidance
|
738 |
+
if self.transformer.config.guidance_embeds:
|
739 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
740 |
+
guidance = guidance.expand(latents.shape[0] * 2)
|
741 |
+
else:
|
742 |
+
guidance = None
|
743 |
+
|
744 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
745 |
+
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
746 |
+
):
|
747 |
+
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
748 |
+
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
749 |
+
|
750 |
+
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
751 |
+
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
752 |
+
):
|
753 |
+
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
754 |
+
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
755 |
+
|
756 |
+
if self.joint_attention_kwargs is None:
|
757 |
+
self._joint_attention_kwargs = {}
|
758 |
+
|
759 |
+
image_embeds = None
|
760 |
+
negative_image_embeds = None
|
761 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
762 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
763 |
+
ip_adapter_image,
|
764 |
+
ip_adapter_image_embeds,
|
765 |
+
device,
|
766 |
+
batch_size * num_images_per_prompt,
|
767 |
+
)
|
768 |
+
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
769 |
+
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
770 |
+
negative_ip_adapter_image,
|
771 |
+
negative_ip_adapter_image_embeds,
|
772 |
+
device,
|
773 |
+
batch_size * num_images_per_prompt,
|
774 |
+
)
|
775 |
+
|
776 |
+
# 6. Denoising loop
|
777 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
778 |
+
for i, t in enumerate(timesteps):
|
779 |
+
if self.interrupt:
|
780 |
+
continue
|
781 |
+
|
782 |
+
self._current_timestep = t
|
783 |
+
if image_embeds is not None:
|
784 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
785 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
786 |
+
timestep = t.expand(latents.shape[0] * 2).to(latents.dtype)
|
787 |
+
|
788 |
+
batch_noise_pred = self.transformer(
|
789 |
+
hidden_states=torch.cat([latents, latents], dim=0),
|
790 |
+
timestep=timestep / 1000,
|
791 |
+
guidance=guidance,
|
792 |
+
pooled_projections=torch.cat([pooled_prompt_embeds, negative_pooled_prompt_embeds.expand_as(pooled_prompt_embeds)], dim=0),
|
793 |
+
encoder_hidden_states=torch.cat([prompt_embeds, negative_prompt_embeds.expand_as(prompt_embeds)], dim=0),
|
794 |
+
txt_ids=text_ids,
|
795 |
+
img_ids=latent_image_ids,
|
796 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
797 |
+
siglip_tensor=torch.cat([siglip_tensor, torch.zeros_like(siglip_tensor)], dim=0),
|
798 |
+
return_dict=False,
|
799 |
+
)[0]
|
800 |
+
noise_pred, neg_noise_pred = batch_noise_pred.chunk(2)
|
801 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
802 |
+
|
803 |
+
# compute the previous noisy sample x_t -> x_t-1
|
804 |
+
latents_dtype = latents.dtype
|
805 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
806 |
+
|
807 |
+
if latents.dtype != latents_dtype:
|
808 |
+
if torch.backends.mps.is_available():
|
809 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
810 |
+
latents = latents.to(latents_dtype)
|
811 |
+
|
812 |
+
if callback_on_step_end is not None:
|
813 |
+
callback_kwargs = {}
|
814 |
+
for k in callback_on_step_end_tensor_inputs:
|
815 |
+
callback_kwargs[k] = locals()[k]
|
816 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
817 |
+
|
818 |
+
latents = callback_outputs.pop("latents", latents)
|
819 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
820 |
+
|
821 |
+
# call the callback, if provided
|
822 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
823 |
+
progress_bar.update()
|
824 |
+
|
825 |
+
self._current_timestep = None
|
826 |
+
|
827 |
+
if output_type == "latent":
|
828 |
+
image = latents
|
829 |
+
else:
|
830 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
831 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
832 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
833 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
834 |
+
|
835 |
+
# Offload all models
|
836 |
+
self.maybe_free_model_hooks()
|
837 |
+
|
838 |
+
if not return_dict:
|
839 |
+
return (image,)
|
840 |
+
|
841 |
+
return FluxPipelineOutput(images=image)
|
modeling_siglip_tokenizer.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import einsum
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from .modeling_vit import create_siglip_vit
|
13 |
+
|
14 |
+
|
15 |
+
def create_anyres_preprocess(
|
16 |
+
short_size=384,
|
17 |
+
long_size=1152,
|
18 |
+
patch_size=16,
|
19 |
+
random_ratio=None,
|
20 |
+
min_short_size=128,
|
21 |
+
max_aspect_ratio=3.,
|
22 |
+
filtering=True
|
23 |
+
):
|
24 |
+
|
25 |
+
def resize_and_filtering(pil_image):
|
26 |
+
pil_image = pil_image.convert('RGB')
|
27 |
+
width, height = pil_image.size
|
28 |
+
ss, ls = min(width, height), max(width, height)
|
29 |
+
aspect_ratio = ls / ss
|
30 |
+
if filtering and (ss < min_short_size or aspect_ratio > max_aspect_ratio):
|
31 |
+
return None
|
32 |
+
target_width, target_height = width, height
|
33 |
+
if random_ratio is not None:
|
34 |
+
log_ratio = torch.log(torch.tensor(random_ratio))
|
35 |
+
sqrt_ratio = torch.exp(0.5 * torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
|
36 |
+
target_width = int(round(target_width * sqrt_ratio))
|
37 |
+
target_height = int(round(target_height / sqrt_ratio))
|
38 |
+
|
39 |
+
ss = min(target_width, target_height)
|
40 |
+
if ss < short_size:
|
41 |
+
target_width = target_width * (short_size / ss)
|
42 |
+
target_height = target_height * (short_size / ss)
|
43 |
+
|
44 |
+
ls = max(target_width, target_height)
|
45 |
+
if ls > long_size:
|
46 |
+
target_width = target_width * (long_size / ls)
|
47 |
+
target_height = target_height * (long_size / ls)
|
48 |
+
|
49 |
+
target_width = int(round(target_width / patch_size)) * patch_size
|
50 |
+
target_height = int(round(target_height / patch_size)) * patch_size
|
51 |
+
pil_image = pil_image.resize((target_width, target_height), resample=Image.BICUBIC)
|
52 |
+
|
53 |
+
to_tensor = transforms.Compose([
|
54 |
+
transforms.ToTensor(),
|
55 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
56 |
+
])
|
57 |
+
return to_tensor(pil_image)
|
58 |
+
|
59 |
+
transform = transforms.Lambda(resize_and_filtering)
|
60 |
+
return transform
|
61 |
+
|
62 |
+
|
63 |
+
class IBQ(nn.Module):
|
64 |
+
def __init__(self, n_e, e_dim, skip_quantization_prob=0.0, quantization_temp=2.0, beta=0.25, sane_index_shape=False, l2_norm=True):
|
65 |
+
super().__init__()
|
66 |
+
self.n_e = n_e
|
67 |
+
self.e_dim = e_dim
|
68 |
+
self.quantization_temp = quantization_temp
|
69 |
+
self.skip_quantization_prob = skip_quantization_prob
|
70 |
+
self.beta = beta
|
71 |
+
self.sane_index_shape = sane_index_shape
|
72 |
+
self.l2_norm = l2_norm
|
73 |
+
|
74 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
75 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
76 |
+
if self.l2_norm:
|
77 |
+
self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
|
78 |
+
|
79 |
+
def forward(self, z, temp=None, rescale_logits=False, return_logits=False, **kwargs):
|
80 |
+
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
81 |
+
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
82 |
+
assert return_logits == False, "Only for interface compatible with Gumbel"
|
83 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
84 |
+
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
85 |
+
assert z.shape[-1] == self.e_dim
|
86 |
+
z_flattened = z.view(-1, self.e_dim)
|
87 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
88 |
+
|
89 |
+
if self.l2_norm:
|
90 |
+
z = F.normalize(z, p=2, dim=-1)
|
91 |
+
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
92 |
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
93 |
+
else:
|
94 |
+
embedding = self.embedding.weight
|
95 |
+
|
96 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
97 |
+
torch.sum(embedding**2, dim=1) - 2 * \
|
98 |
+
torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
|
99 |
+
|
100 |
+
if self.training:
|
101 |
+
logits = -d / self.quantization_temp
|
102 |
+
soft_one_hot = F.softmax(logits, dim=1)
|
103 |
+
min_encoding_indices = soft_one_hot.max(1, keepdim=True)[1]
|
104 |
+
hard_one_hot = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(1, min_encoding_indices, 1.0)
|
105 |
+
one_hot = hard_one_hot - soft_one_hot.detach() + soft_one_hot
|
106 |
+
|
107 |
+
z_q = einsum('b n, n d -> b d', one_hot, self.embedding.weight).view(z.shape)
|
108 |
+
z_q_2 = einsum('b n, n d -> b d', hard_one_hot, self.embedding.weight).view(z.shape)
|
109 |
+
|
110 |
+
# compute loss for embedding
|
111 |
+
commit_loss = torch.mean((z_q - z) ** 2) + torch.mean((z_q_2.detach() - z) ** 2) + self.beta * \
|
112 |
+
torch.mean((z_q_2 - z.detach()) ** 2)
|
113 |
+
else:
|
114 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
115 |
+
z_q = embedding[min_encoding_indices].view(z.shape)
|
116 |
+
commit_loss = None
|
117 |
+
|
118 |
+
if self.training and self.skip_quantization_prob > 0.0:
|
119 |
+
z_q = torch.where(
|
120 |
+
torch.rand_like(z_q[:, 0:1, 0:1, 0:1]).expand_as(z_q) <= self.skip_quantization_prob,
|
121 |
+
z, z_q,
|
122 |
+
)
|
123 |
+
|
124 |
+
# reshape back to match original input shape
|
125 |
+
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
126 |
+
|
127 |
+
if self.sane_index_shape:
|
128 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
129 |
+
|
130 |
+
return (z_q, None, min_encoding_indices), commit_loss
|
131 |
+
|
132 |
+
def get_codebook_entry(self, indices, bhwc):
|
133 |
+
# shape specifying (batch, height, width, channel)
|
134 |
+
# get quantized latent vectors
|
135 |
+
z_q = self.embedding(indices)
|
136 |
+
|
137 |
+
if bhwc is not None:
|
138 |
+
z_q = z_q.view(bhwc)
|
139 |
+
# reshape back to match original input shape
|
140 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
141 |
+
|
142 |
+
return z_q
|
143 |
+
|
144 |
+
|
145 |
+
class ResidualBlock(nn.Module):
|
146 |
+
def __init__(self, channels, num_groups=32):
|
147 |
+
super().__init__()
|
148 |
+
self.conv1 = nn.Conv2d(channels, channels, 3, padding='same')
|
149 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=channels)
|
150 |
+
self.activate = nn.GELU()
|
151 |
+
self.conv2 = nn.Conv2d(channels, channels, 3, padding='same')
|
152 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=channels)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
res = x
|
156 |
+
x = self.norm1(x)
|
157 |
+
x = self.activate(x)
|
158 |
+
x = self.conv1(x)
|
159 |
+
x = self.norm2(x)
|
160 |
+
x = self.activate(x)
|
161 |
+
x = self.conv2(x)
|
162 |
+
return x + res
|
163 |
+
|
164 |
+
|
165 |
+
class VQConvProjector(nn.Module):
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
z_channels=1536,
|
169 |
+
codebook_size=16384,
|
170 |
+
codebook_dim=2048,
|
171 |
+
conv_layers=2,
|
172 |
+
with_norm=True,
|
173 |
+
skip_quant_prob=0.1,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
self.quant_conv = nn.Conv2d(z_channels, codebook_dim, 1)
|
177 |
+
self.quantize = IBQ(codebook_size, codebook_dim, skip_quant_prob, sane_index_shape=True)
|
178 |
+
self.post_quant_conv = nn.Conv2d(codebook_dim, z_channels, 1)
|
179 |
+
block = ResidualBlock
|
180 |
+
self.post_conv = nn.Sequential(*[block(z_channels) for _ in range(conv_layers)])
|
181 |
+
|
182 |
+
def forward(self, x, h, w):
|
183 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
184 |
+
z = self.quant_conv(x)
|
185 |
+
(z_q, _, _), codebook_loss = self.quantize(z)
|
186 |
+
z = self.post_quant_conv(z_q)
|
187 |
+
z = self.post_conv(z)
|
188 |
+
z = rearrange(z, 'b c h w -> b (h w) c')
|
189 |
+
return z, codebook_loss
|
190 |
+
|
191 |
+
def encode(self, x, h, w):
|
192 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
193 |
+
z = self.quant_conv(x)
|
194 |
+
(_, _, tokens), _ = self.quantize(z)
|
195 |
+
return tokens
|
196 |
+
|
197 |
+
def decode(self, tokens, bhwc):
|
198 |
+
z_q = self.quantize.get_codebook_entry(tokens, bhwc)
|
199 |
+
z = self.post_quant_conv(z_q)
|
200 |
+
z = self.post_conv(z)
|
201 |
+
return z
|
202 |
+
|
203 |
+
|
204 |
+
class SiglipTokenizer(nn.Module):
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
siglip_name,
|
208 |
+
siglip_path,
|
209 |
+
projector_path,
|
210 |
+
z_channels=1536,
|
211 |
+
codebook_size=16384,
|
212 |
+
codebook_dim=2048,
|
213 |
+
with_norm=True
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
self.vit = create_siglip_vit(model_name=siglip_name, path=siglip_path)
|
217 |
+
self.vqproj = VQConvProjector(
|
218 |
+
z_channels=z_channels,
|
219 |
+
codebook_size=codebook_size,
|
220 |
+
codebook_dim=codebook_dim,
|
221 |
+
with_norm=with_norm
|
222 |
+
)
|
223 |
+
self.vqproj.load_state_dict(torch.load(projector_path, map_location='cpu'), strict=True)
|
224 |
+
|
225 |
+
def encode(self, x):
|
226 |
+
features, (h, w), _ = self.vit(x)
|
227 |
+
tokens = self.vqproj.encode(features, h, w)
|
228 |
+
return tokens
|
229 |
+
|
230 |
+
def decode(self, tokens, bhwc):
|
231 |
+
return self.vqproj.decode(tokens, bhwc)
|
modeling_vit.py
ADDED
@@ -0,0 +1,699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from functools import partial
|
5 |
+
from typing import (
|
6 |
+
Callable, Dict, Final, List, Literal, Optional,
|
7 |
+
Sequence, Set, Tuple, Type, Union,
|
8 |
+
)
|
9 |
+
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from timm.layers import (
|
16 |
+
DropPath, LayerType, Mlp, PatchDropout,
|
17 |
+
PatchEmbed, resample_abs_pos_embed,
|
18 |
+
)
|
19 |
+
from timm.models._manipulate import checkpoint_seq, named_apply
|
20 |
+
|
21 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
22 |
+
|
23 |
+
|
24 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
25 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
26 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
27 |
+
def norm_cdf(x):
|
28 |
+
# Computes standard normal cumulative distribution function
|
29 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
30 |
+
|
31 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
32 |
+
warnings.warn(
|
33 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
34 |
+
"The distribution of values may be incorrect.",
|
35 |
+
stacklevel=2,
|
36 |
+
)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
# Values are generated by using a truncated uniform distribution and
|
40 |
+
# then using the inverse CDF for the normal distribution.
|
41 |
+
# Get upper and lower cdf values
|
42 |
+
l = norm_cdf((a - mean) / std) # noqa: E741
|
43 |
+
u = norm_cdf((b - mean) / std)
|
44 |
+
|
45 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
46 |
+
# [2l-1, 2u-1].
|
47 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
48 |
+
|
49 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
50 |
+
# standard normal
|
51 |
+
tensor.erfinv_()
|
52 |
+
|
53 |
+
# Transform to proper mean, std
|
54 |
+
tensor.mul_(std * math.sqrt(2.0))
|
55 |
+
tensor.add_(mean)
|
56 |
+
|
57 |
+
# Clamp to ensure it's in the proper range
|
58 |
+
tensor.clamp_(min=a, max=b)
|
59 |
+
return tensor
|
60 |
+
|
61 |
+
|
62 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
63 |
+
# type: (torch.Tensor, float, float, float, float) -> torch.Tensor
|
64 |
+
r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
|
65 |
+
convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
|
66 |
+
Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
|
67 |
+
from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
68 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
69 |
+
the bounds. The method used for generating the random values works
|
70 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
71 |
+
Args:
|
72 |
+
tensor: an n-dimensional `torch.Tensor`
|
73 |
+
mean: the mean of the normal distribution
|
74 |
+
std: the standard deviation of the normal distribution
|
75 |
+
a: the minimum cutoff value
|
76 |
+
b: the maximum cutoff value
|
77 |
+
Examples:
|
78 |
+
>>> w = torch.empty(3, 5)
|
79 |
+
>>> nn.init.trunc_normal_(w)
|
80 |
+
"""
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
dtype = tensor.dtype
|
84 |
+
tensor_fp32 = tensor.float()
|
85 |
+
tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b)
|
86 |
+
tensor_dtype = tensor_fp32.to(dtype=dtype)
|
87 |
+
tensor.copy_(tensor_dtype)
|
88 |
+
|
89 |
+
|
90 |
+
def init_weights(self):
|
91 |
+
if self.pos_embed is not None:
|
92 |
+
trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
|
93 |
+
trunc_normal_(self.latent, std=self.latent_dim**-0.5)
|
94 |
+
|
95 |
+
|
96 |
+
def init_weights_vit_timm(module: nn.Module, name: str = "") -> None:
|
97 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
98 |
+
if isinstance(module, nn.Linear):
|
99 |
+
trunc_normal_(module.weight, std=0.02)
|
100 |
+
if module.bias is not None:
|
101 |
+
nn.init.zeros_(module.bias)
|
102 |
+
elif hasattr(module, "init_weights"):
|
103 |
+
module.init_weights()
|
104 |
+
|
105 |
+
|
106 |
+
class Attention(nn.Module):
|
107 |
+
fused_attn: Final[bool]
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
dim: int,
|
112 |
+
num_heads: int = 8,
|
113 |
+
qkv_bias: bool = False,
|
114 |
+
qk_norm: bool = False,
|
115 |
+
attn_drop: float = 0.0,
|
116 |
+
proj_drop: float = 0.0,
|
117 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
118 |
+
) -> None:
|
119 |
+
super().__init__()
|
120 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
121 |
+
self.num_heads = num_heads
|
122 |
+
self.head_dim = dim // num_heads
|
123 |
+
self.scale = self.head_dim**-0.5
|
124 |
+
# self.fused_attn = use_fused_attn()
|
125 |
+
self.fused_attn = True
|
126 |
+
|
127 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
128 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
129 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
130 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
131 |
+
self.proj = nn.Linear(dim, dim)
|
132 |
+
self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity()
|
133 |
+
|
134 |
+
def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor:
|
135 |
+
B, N, C = x.shape
|
136 |
+
qkv = (
|
137 |
+
self.qkv(x)
|
138 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
139 |
+
.permute(2, 0, 3, 1, 4)
|
140 |
+
)
|
141 |
+
q, k, v = qkv.unbind(0)
|
142 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
143 |
+
|
144 |
+
if cu_slens is not None:
|
145 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
146 |
+
k = k.permute(0, 2, 1, 3)
|
147 |
+
v = v.permute(0, 2, 1, 3)
|
148 |
+
max_seqlen = torch.max(cu_slens[1:] - cu_slens[:-1]).item()
|
149 |
+
x = flash_attn_varlen_func(
|
150 |
+
q.squeeze(0),
|
151 |
+
k.squeeze(0),
|
152 |
+
v.squeeze(0),
|
153 |
+
cu_seqlens_q=cu_slens,
|
154 |
+
cu_seqlens_k=cu_slens,
|
155 |
+
max_seqlen_q=max_seqlen,
|
156 |
+
max_seqlen_k=max_seqlen,
|
157 |
+
softmax_scale=self.scale,
|
158 |
+
causal=False,
|
159 |
+
)
|
160 |
+
|
161 |
+
x = x.reshape(B, N, -1)
|
162 |
+
x = self.proj(x)
|
163 |
+
x = self.proj_drop(x)
|
164 |
+
|
165 |
+
else:
|
166 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
167 |
+
k = k.permute(0, 2, 1, 3)
|
168 |
+
v = v.permute(0, 2, 1, 3)
|
169 |
+
x = flash_attn_func(q, k, v, softmax_scale=self.scale) # -> b, n, h, c
|
170 |
+
|
171 |
+
x = x.reshape(B, N, -1)
|
172 |
+
x = self.proj(x)
|
173 |
+
x = self.proj_drop(x)
|
174 |
+
return x
|
175 |
+
|
176 |
+
|
177 |
+
class LayerScale(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
dim: int,
|
181 |
+
init_values: float = 1e-5,
|
182 |
+
inplace: bool = False,
|
183 |
+
) -> None:
|
184 |
+
super().__init__()
|
185 |
+
self.inplace = inplace
|
186 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
187 |
+
|
188 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
189 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
190 |
+
|
191 |
+
|
192 |
+
class Block(nn.Module):
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
dim: int,
|
196 |
+
num_heads: int,
|
197 |
+
mlp_ratio: float = 4.0,
|
198 |
+
qkv_bias: bool = False,
|
199 |
+
qk_norm: bool = False,
|
200 |
+
proj_drop: float = 0.0,
|
201 |
+
attn_drop: float = 0.0,
|
202 |
+
init_values: Optional[float] = None,
|
203 |
+
drop_path: float = 0.0,
|
204 |
+
act_layer: nn.Module = nn.GELU,
|
205 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
206 |
+
mlp_layer: nn.Module = Mlp,
|
207 |
+
) -> None:
|
208 |
+
super().__init__()
|
209 |
+
self.norm1 = norm_layer(dim)
|
210 |
+
self.attn = Attention(
|
211 |
+
dim,
|
212 |
+
num_heads=num_heads,
|
213 |
+
qkv_bias=qkv_bias,
|
214 |
+
qk_norm=qk_norm,
|
215 |
+
attn_drop=attn_drop,
|
216 |
+
proj_drop=proj_drop,
|
217 |
+
norm_layer=norm_layer,
|
218 |
+
)
|
219 |
+
self.ls1 = (
|
220 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
221 |
+
)
|
222 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
223 |
+
|
224 |
+
self.norm2 = norm_layer(dim)
|
225 |
+
self.mlp = mlp_layer(
|
226 |
+
in_features=dim,
|
227 |
+
hidden_features=int(dim * mlp_ratio),
|
228 |
+
act_layer=act_layer,
|
229 |
+
drop=proj_drop,
|
230 |
+
)
|
231 |
+
self.ls2 = (
|
232 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
233 |
+
)
|
234 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
235 |
+
|
236 |
+
def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor:
|
237 |
+
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_slens=cu_slens)))
|
238 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
239 |
+
return x
|
240 |
+
|
241 |
+
|
242 |
+
class VisionTransformer(nn.Module):
|
243 |
+
"""Vision Transformer
|
244 |
+
|
245 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
|
246 |
+
- https://arxiv.org/abs/2010.11929
|
247 |
+
"""
|
248 |
+
|
249 |
+
dynamic_img_size: Final[bool]
|
250 |
+
|
251 |
+
def __init__(
|
252 |
+
self,
|
253 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
254 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
255 |
+
in_chans: int = 3,
|
256 |
+
num_classes: int = 1000,
|
257 |
+
global_pool: Literal["", "avg", "token", "map"] = "token",
|
258 |
+
embed_dim: int = 768,
|
259 |
+
depth: int = 12,
|
260 |
+
num_heads: int = 12,
|
261 |
+
mlp_ratio: float = 4.0,
|
262 |
+
qkv_bias: bool = True,
|
263 |
+
qk_norm: bool = False,
|
264 |
+
init_values: Optional[float] = None,
|
265 |
+
class_token: bool = True,
|
266 |
+
no_embed_class: bool = False,
|
267 |
+
reg_tokens: int = 0,
|
268 |
+
pre_norm: bool = False,
|
269 |
+
fc_norm: Optional[bool] = None,
|
270 |
+
dynamic_img_size: bool = False,
|
271 |
+
dynamic_img_pad: bool = False,
|
272 |
+
drop_rate: float = 0.0,
|
273 |
+
pos_drop_rate: float = 0.0,
|
274 |
+
patch_drop_rate: float = 0.0,
|
275 |
+
proj_drop_rate: float = 0.0,
|
276 |
+
attn_drop_rate: float = 0.0,
|
277 |
+
drop_path_rate: float = 0.0,
|
278 |
+
weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "",
|
279 |
+
embed_layer: Callable = PatchEmbed,
|
280 |
+
norm_layer: Optional[LayerType] = None,
|
281 |
+
act_layer: Optional[LayerType] = None,
|
282 |
+
strict_img_size: bool = False,
|
283 |
+
block_fn: Type[nn.Module] = Block,
|
284 |
+
mlp_layer: Type[nn.Module] = Mlp,
|
285 |
+
ignore_head: bool = False,
|
286 |
+
) -> None:
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
img_size: Input image size.
|
290 |
+
patch_size: Patch size.
|
291 |
+
in_chans: Number of image input channels.
|
292 |
+
num_classes: Mumber of classes for classification head.
|
293 |
+
global_pool: Type of global pooling for final sequence (default: 'token').
|
294 |
+
embed_dim: Transformer embedding dimension.
|
295 |
+
depth: Depth of transformer.
|
296 |
+
num_heads: Number of attention heads.
|
297 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
298 |
+
qkv_bias: Enable bias for qkv projections if True.
|
299 |
+
init_values: Layer-scale init values (layer-scale enabled if not None).
|
300 |
+
class_token: Use class token.
|
301 |
+
no_embed_class: Don't include position embeddings for class (or reg) tokens.
|
302 |
+
reg_tokens: Number of register tokens.
|
303 |
+
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
|
304 |
+
drop_rate: Head dropout rate.
|
305 |
+
pos_drop_rate: Position embedding dropout rate.
|
306 |
+
attn_drop_rate: Attention dropout rate.
|
307 |
+
drop_path_rate: Stochastic depth rate.
|
308 |
+
weight_init: Weight initialization scheme.
|
309 |
+
embed_layer: Patch embedding layer.
|
310 |
+
norm_layer: Normalization layer.
|
311 |
+
act_layer: MLP activation layer.
|
312 |
+
block_fn: Transformer block layer.
|
313 |
+
"""
|
314 |
+
super().__init__()
|
315 |
+
assert global_pool in ("", "avg", "token", "map")
|
316 |
+
assert class_token or global_pool != "token"
|
317 |
+
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
|
318 |
+
# norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
|
319 |
+
# act_layer = get_act_layer(act_layer) or nn.GELU
|
320 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
321 |
+
act_layer = nn.GELU
|
322 |
+
|
323 |
+
self.num_classes = num_classes
|
324 |
+
self.global_pool = global_pool
|
325 |
+
self.num_features = self.embed_dim = (
|
326 |
+
embed_dim # num_features for consistency with other models
|
327 |
+
)
|
328 |
+
self.num_prefix_tokens = 1 if class_token else 0
|
329 |
+
self.num_prefix_tokens += reg_tokens
|
330 |
+
self.num_reg_tokens = reg_tokens
|
331 |
+
self.has_class_token = class_token
|
332 |
+
self.no_embed_class = (
|
333 |
+
no_embed_class # don't embed prefix positions (includes reg)
|
334 |
+
)
|
335 |
+
self.dynamic_img_size = dynamic_img_size
|
336 |
+
self.grad_checkpointing = False
|
337 |
+
self.ignore_head = ignore_head
|
338 |
+
|
339 |
+
embed_args = {}
|
340 |
+
if dynamic_img_size:
|
341 |
+
# flatten deferred until after pos embed
|
342 |
+
embed_args.update(dict(strict_img_size=False, output_fmt="NHWC"))
|
343 |
+
self.patch_embed = embed_layer(
|
344 |
+
img_size=img_size,
|
345 |
+
patch_size=patch_size,
|
346 |
+
in_chans=in_chans,
|
347 |
+
embed_dim=embed_dim,
|
348 |
+
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
|
349 |
+
dynamic_img_pad=dynamic_img_pad,
|
350 |
+
strict_img_size=strict_img_size,
|
351 |
+
**embed_args,
|
352 |
+
)
|
353 |
+
num_patches = self.patch_embed.num_patches
|
354 |
+
|
355 |
+
self.cls_token = (
|
356 |
+
nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
|
357 |
+
)
|
358 |
+
self.reg_token = (
|
359 |
+
nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
|
360 |
+
)
|
361 |
+
embed_len = (
|
362 |
+
num_patches if no_embed_class else num_patches + self.num_prefix_tokens
|
363 |
+
)
|
364 |
+
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
|
365 |
+
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
366 |
+
if patch_drop_rate > 0:
|
367 |
+
self.patch_drop = PatchDropout(
|
368 |
+
patch_drop_rate,
|
369 |
+
num_prefix_tokens=self.num_prefix_tokens,
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
self.patch_drop = nn.Identity()
|
373 |
+
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
|
374 |
+
|
375 |
+
dpr = [
|
376 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
377 |
+
] # stochastic depth decay rule
|
378 |
+
self.blocks = nn.Sequential(
|
379 |
+
*[
|
380 |
+
block_fn(
|
381 |
+
dim=embed_dim,
|
382 |
+
num_heads=num_heads,
|
383 |
+
mlp_ratio=mlp_ratio,
|
384 |
+
qkv_bias=qkv_bias,
|
385 |
+
qk_norm=qk_norm,
|
386 |
+
init_values=init_values,
|
387 |
+
proj_drop=proj_drop_rate,
|
388 |
+
attn_drop=attn_drop_rate,
|
389 |
+
drop_path=dpr[i],
|
390 |
+
norm_layer=norm_layer,
|
391 |
+
act_layer=act_layer,
|
392 |
+
mlp_layer=mlp_layer,
|
393 |
+
)
|
394 |
+
for i in range(depth)
|
395 |
+
]
|
396 |
+
)
|
397 |
+
|
398 |
+
def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None:
|
399 |
+
assert mode in ("jax", "jax_nlhb", "moco", "")
|
400 |
+
# head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0
|
401 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
402 |
+
if self.cls_token is not None:
|
403 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
404 |
+
named_apply(init_weights_vit_timm, self)
|
405 |
+
|
406 |
+
@torch.jit.ignore
|
407 |
+
def no_weight_decay(self) -> Set:
|
408 |
+
return {"pos_embed", "cls_token", "dist_token"}
|
409 |
+
|
410 |
+
@torch.jit.ignore
|
411 |
+
def group_matcher(self, coarse: bool = False) -> Dict:
|
412 |
+
return dict(
|
413 |
+
stem=r"^cls_token|pos_embed|patch_embed", # stem and embed
|
414 |
+
blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))],
|
415 |
+
)
|
416 |
+
|
417 |
+
@torch.jit.ignore
|
418 |
+
def set_grad_checkpointing(self, enable: bool = True) -> None:
|
419 |
+
self.grad_checkpointing = enable
|
420 |
+
|
421 |
+
@torch.jit.ignore
|
422 |
+
def get_classifier(self) -> nn.Module:
|
423 |
+
return self.head
|
424 |
+
|
425 |
+
def reset_classifier(self, num_classes: int, global_pool=None) -> None:
|
426 |
+
self.num_classes = num_classes
|
427 |
+
if global_pool is not None:
|
428 |
+
assert global_pool in ("", "avg", "token", "map")
|
429 |
+
if global_pool == "map" and self.attn_pool is None:
|
430 |
+
assert (
|
431 |
+
False
|
432 |
+
), "Cannot currently add attention pooling in reset_classifier()."
|
433 |
+
elif global_pool != "map " and self.attn_pool is not None:
|
434 |
+
self.attn_pool = None # remove attention pooling
|
435 |
+
self.global_pool = global_pool
|
436 |
+
self.head = (
|
437 |
+
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
438 |
+
)
|
439 |
+
|
440 |
+
def rescale_positional_embedding(self, out_size):
|
441 |
+
h, w = out_size
|
442 |
+
pos_embed_shape = int((self.pos_embed.shape[1]) ** 0.5)
|
443 |
+
if (h, w) == (pos_embed_shape, pos_embed_shape):
|
444 |
+
return self.pos_embed
|
445 |
+
rescaled_positional_embedding = \
|
446 |
+
self.pos_embed.new_zeros(1, h*w, self.pos_embed.shape[2])
|
447 |
+
pe_2d = self.pos_embed[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
|
448 |
+
pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
|
449 |
+
rescaled_positional_embedding[0] = pe_2d.T.contiguous()
|
450 |
+
return rescaled_positional_embedding
|
451 |
+
|
452 |
+
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
|
453 |
+
if self.dynamic_img_size:
|
454 |
+
B, H, W, C = x.shape
|
455 |
+
pos_embed = resample_abs_pos_embed(
|
456 |
+
self.pos_embed,
|
457 |
+
(H, W),
|
458 |
+
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
|
459 |
+
)
|
460 |
+
x = x.view(B, -1, C)
|
461 |
+
else:
|
462 |
+
pos_embed = self.pos_embed
|
463 |
+
|
464 |
+
to_cat = []
|
465 |
+
if self.cls_token is not None:
|
466 |
+
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
|
467 |
+
if self.reg_token is not None:
|
468 |
+
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
|
469 |
+
|
470 |
+
if self.no_embed_class:
|
471 |
+
# deit-3, updated JAX (big vision)
|
472 |
+
# position embedding does not overlap with class token, add then concat
|
473 |
+
x = x + pos_embed
|
474 |
+
if to_cat:
|
475 |
+
x = torch.cat(to_cat + [x], dim=1)
|
476 |
+
else:
|
477 |
+
# original timm, JAX, and deit vit impl
|
478 |
+
# pos_embed has entry for class token, concat then add
|
479 |
+
if to_cat:
|
480 |
+
x = torch.cat(to_cat + [x], dim=1)
|
481 |
+
x = x + pos_embed
|
482 |
+
|
483 |
+
return self.pos_drop(x)
|
484 |
+
|
485 |
+
def _intermediate_layers(
|
486 |
+
self,
|
487 |
+
x: torch.Tensor,
|
488 |
+
n: Union[int, Sequence] = 1,
|
489 |
+
) -> List[torch.Tensor]:
|
490 |
+
outputs, num_blocks = [], len(self.blocks)
|
491 |
+
take_indices = set(
|
492 |
+
range(num_blocks - n, num_blocks) if isinstance(n, int) else n
|
493 |
+
)
|
494 |
+
|
495 |
+
# forward pass
|
496 |
+
x = self.patch_embed(x)
|
497 |
+
x = self._pos_embed(x)
|
498 |
+
x = self.patch_drop(x)
|
499 |
+
x = self.norm_pre(x)
|
500 |
+
for i, blk in enumerate(self.blocks):
|
501 |
+
x = blk(x)
|
502 |
+
if i in take_indices:
|
503 |
+
outputs.append(x)
|
504 |
+
|
505 |
+
return outputs
|
506 |
+
|
507 |
+
def get_intermediate_layers(
|
508 |
+
self,
|
509 |
+
x: torch.Tensor,
|
510 |
+
n: Union[int, Sequence] = 1,
|
511 |
+
reshape: bool = False,
|
512 |
+
return_prefix_tokens: bool = False,
|
513 |
+
norm: bool = False,
|
514 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
515 |
+
"""Intermediate layer accessor (NOTE: This is a WIP experiment).
|
516 |
+
Inspired by DINO / DINOv2 interface
|
517 |
+
"""
|
518 |
+
# take last n blocks if n is an int, if in is a sequence, select by matching indices
|
519 |
+
outputs = self._intermediate_layers(x, n)
|
520 |
+
if norm:
|
521 |
+
outputs = [self.norm(out) for out in outputs]
|
522 |
+
prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
|
523 |
+
outputs = [out[:, self.num_prefix_tokens :] for out in outputs]
|
524 |
+
|
525 |
+
if reshape:
|
526 |
+
grid_size = self.patch_embed.grid_size
|
527 |
+
outputs = [
|
528 |
+
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
|
529 |
+
.permute(0, 3, 1, 2)
|
530 |
+
.contiguous()
|
531 |
+
for out in outputs
|
532 |
+
]
|
533 |
+
|
534 |
+
if return_prefix_tokens:
|
535 |
+
return tuple(zip(outputs, prefix_tokens))
|
536 |
+
return tuple(outputs)
|
537 |
+
|
538 |
+
def forward_features_list(self, x_list):
|
539 |
+
x_all = []
|
540 |
+
image_sizes = []
|
541 |
+
for x in x_list:
|
542 |
+
bs, _, h, w = x.shape
|
543 |
+
|
544 |
+
# fix patch size=14 in datasets
|
545 |
+
pad_h = (self.patch_embed.patch_size[0] - h % self.patch_embed.patch_size[0]) % self.patch_embed.patch_size[0]
|
546 |
+
pad_w = (self.patch_embed.patch_size[1] - w % self.patch_embed.patch_size[1]) % self.patch_embed.patch_size[1]
|
547 |
+
x = F.pad(x, (0, pad_w, 0, pad_h))
|
548 |
+
|
549 |
+
bs, _, h, w = x.shape
|
550 |
+
|
551 |
+
h = h // self.patch_embed.patch_size[0]
|
552 |
+
w = w // self.patch_embed.patch_size[1]
|
553 |
+
|
554 |
+
x = self.patch_embed(x)
|
555 |
+
x = x + self.rescale_positional_embedding(out_size=(h, w))
|
556 |
+
x = self.patch_drop(x)
|
557 |
+
x = self.norm_pre(x)
|
558 |
+
x_all.append(x)
|
559 |
+
image_sizes.append((h, w))
|
560 |
+
|
561 |
+
slen = [xi.size(1) for xi in x_all]
|
562 |
+
x = torch.cat(x_all, dim=1)
|
563 |
+
|
564 |
+
cu_indices = [0, ]
|
565 |
+
for i in slen:
|
566 |
+
cu_indices.append(cu_indices[-1] + i)
|
567 |
+
|
568 |
+
cu_slens = torch.tensor(cu_indices, dtype=torch.int32).to(x.device)
|
569 |
+
for idx, blk in enumerate(self.blocks):
|
570 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
571 |
+
x = checkpoint(blk, x, cu_slens, use_reentrant=True)
|
572 |
+
else:
|
573 |
+
x = blk(x, cu_slens=cu_slens)
|
574 |
+
feats = x.split(slen, dim=1) #[(1, slen, c)]
|
575 |
+
return feats, image_sizes
|
576 |
+
|
577 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
578 |
+
bs, _, h, w = x.shape
|
579 |
+
h = h // self.patch_embed.patch_size[0]
|
580 |
+
w = w // self.patch_embed.patch_size[1]
|
581 |
+
|
582 |
+
x = self.patch_embed(x)
|
583 |
+
# x = self._pos_embed(x)
|
584 |
+
x = x + self.rescale_positional_embedding(out_size=(h, w))
|
585 |
+
x = self.patch_drop(x)
|
586 |
+
x = self.norm_pre(x)
|
587 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
588 |
+
x = checkpoint_seq(self.blocks, x)
|
589 |
+
else:
|
590 |
+
x = self.blocks(x)
|
591 |
+
return x, (h, w)
|
592 |
+
|
593 |
+
def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
|
594 |
+
x = self.norm(x)
|
595 |
+
if self.attn_pool is not None:
|
596 |
+
x = self.attn_pool(x)
|
597 |
+
elif self.global_pool == "avg":
|
598 |
+
x = x[:, self.num_prefix_tokens :].mean(dim=1)
|
599 |
+
elif self.global_pool:
|
600 |
+
x = x[:, 0] # class token
|
601 |
+
x = self.fc_norm(x)
|
602 |
+
x = self.head_drop(x)
|
603 |
+
return x if pre_logits else self.head(x)
|
604 |
+
|
605 |
+
def forward(self, x, cal_attn_pool=False):
|
606 |
+
if type(x) is list:
|
607 |
+
x, image_sizes = self.forward_features_list(x)
|
608 |
+
return x, image_sizes, None
|
609 |
+
else:
|
610 |
+
x, image_sizes = self.forward_features(x)
|
611 |
+
return x, image_sizes, None
|
612 |
+
|
613 |
+
@dataclass
|
614 |
+
class SigLIPVisionCfg:
|
615 |
+
width: int = 1152
|
616 |
+
layers: Union[Tuple[int, int, int, int], int] = 27
|
617 |
+
heads: int = 16
|
618 |
+
patch_size: int = 14
|
619 |
+
image_size: Union[Tuple[int, int], int] = 336
|
620 |
+
global_pool: str = "map"
|
621 |
+
mlp_ratio: float = 3.7362
|
622 |
+
class_token: bool = False
|
623 |
+
num_classes: int = 0
|
624 |
+
use_checkpoint: bool = False
|
625 |
+
|
626 |
+
|
627 |
+
SigLIP_MODEL_CONFIG = {
|
628 |
+
"siglip_so400m_patch16_384": {
|
629 |
+
"image_size": 384,
|
630 |
+
"patch_size": 16,
|
631 |
+
"width": 1152,
|
632 |
+
"layers": 27,
|
633 |
+
"heads": 16,
|
634 |
+
"mlp_ratio": 3.7362,
|
635 |
+
"global_pool": "map",
|
636 |
+
"use_checkpoint": False,
|
637 |
+
},
|
638 |
+
"siglip2_giant_patch16_384":{
|
639 |
+
"image_size": 384,
|
640 |
+
"patch_size": 16,
|
641 |
+
"width": 1536,
|
642 |
+
"layers": 40,
|
643 |
+
"heads": 16,
|
644 |
+
"mlp_ratio": 4,
|
645 |
+
"global_pool": "map",
|
646 |
+
"use_checkpoint": False,
|
647 |
+
},
|
648 |
+
}
|
649 |
+
|
650 |
+
|
651 |
+
def resize_evaclip_pos_embed(model: VisionTransformer, interpolation: str = 'bicubic'):
|
652 |
+
# interpolate position embedding
|
653 |
+
orig_size = 24
|
654 |
+
new_size = 128
|
655 |
+
pos_tokens = model.pos_embed
|
656 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, model.embed_dim).permute(0, 3, 1, 2)
|
657 |
+
pos_tokens = torch.nn.functional.interpolate(
|
658 |
+
pos_tokens, size=(new_size, new_size), mode=interpolation, align_corners=False)
|
659 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
660 |
+
model.pos_embed = nn.Parameter(pos_tokens, requires_grad=True)
|
661 |
+
return model
|
662 |
+
|
663 |
+
|
664 |
+
def create_siglip_vit(
|
665 |
+
model_name: str = "siglip_so400m_patch14_384",
|
666 |
+
select_layer: int = -1,
|
667 |
+
path: str = "",
|
668 |
+
gradient_checkpointing: bool = False,
|
669 |
+
**kwargs,
|
670 |
+
):
|
671 |
+
vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name])
|
672 |
+
|
673 |
+
if select_layer <= 0:
|
674 |
+
layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1)
|
675 |
+
else:
|
676 |
+
layers = min(vision_cfg.layers, select_layer)
|
677 |
+
|
678 |
+
model = VisionTransformer(
|
679 |
+
img_size=2048,
|
680 |
+
patch_size=16,
|
681 |
+
embed_dim=vision_cfg.width,
|
682 |
+
depth=layers,
|
683 |
+
num_heads=vision_cfg.heads,
|
684 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
685 |
+
class_token=vision_cfg.class_token,
|
686 |
+
global_pool=vision_cfg.global_pool,
|
687 |
+
dynamic_img_pad=False,
|
688 |
+
strict_img_size=False,
|
689 |
+
ignore_head=kwargs.get("ignore_head", False),
|
690 |
+
weight_init=kwargs.get("weight_init", "skip"),
|
691 |
+
num_classes=0
|
692 |
+
)
|
693 |
+
model.config = vision_cfg
|
694 |
+
state_dict = torch.load(path, map_location="cpu")
|
695 |
+
model.load_state_dict(state_dict, strict=False)
|
696 |
+
|
697 |
+
if gradient_checkpointing:
|
698 |
+
model.set_grad_checkpointing(True)
|
699 |
+
return model
|
modeling_xomni.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from types import SimpleNamespace
|
3 |
+
from typing import Tuple, List, Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from transformers import Qwen2ForCausalLM, AutoModel, AutoModelForCausalLM
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm, Qwen2RotaryEmbedding, Qwen2DecoderLayer, Qwen2Model, Qwen2PreTrainedModel
|
12 |
+
|
13 |
+
from .configuration_xomni import XOmniConfig
|
14 |
+
from .modeling_siglip_tokenizer import create_anyres_preprocess, SiglipTokenizer
|
15 |
+
from .modeling_siglip_flux import FluxTransformer2DModelWithSigLIP, FluxPipelineWithSigLIP
|
16 |
+
from .modeling_vit import create_siglip_vit
|
17 |
+
|
18 |
+
|
19 |
+
class XOmniDecoderLayer(Qwen2DecoderLayer):
|
20 |
+
def __init__(self, config: XOmniConfig, layer_idx: int):
|
21 |
+
super().__init__(config, layer_idx)
|
22 |
+
self.layer_idx = layer_idx
|
23 |
+
self.is_lm_layer = config.num_mm_adap_layers <= layer_idx < config.num_hidden_layers - config.num_mm_head_layers
|
24 |
+
|
25 |
+
def forward(
|
26 |
+
self,
|
27 |
+
hidden_states: torch.Tensor,
|
28 |
+
**kwargs,
|
29 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
30 |
+
hidden_states, multimodal_mask = torch.split(hidden_states, hidden_states.shape[-1] // 2, dim=-1)
|
31 |
+
if self.is_lm_layer:
|
32 |
+
output_hidden_states, *others = super().forward(hidden_states, **kwargs)
|
33 |
+
output_hidden_states = torch.cat([output_hidden_states, multimodal_mask], dim=-1)
|
34 |
+
return output_hidden_states, *others
|
35 |
+
|
36 |
+
# mm_hidden_states = torch.where(multimodal_mask.bool(), hidden_states, torch.zeros_like(hidden_states))
|
37 |
+
output_hidden_states, *others = super().forward(hidden_states, **kwargs)
|
38 |
+
output_hidden_states = torch.where(multimodal_mask.bool(), output_hidden_states, hidden_states)
|
39 |
+
output_hidden_states = torch.cat([output_hidden_states, multimodal_mask], dim=-1)
|
40 |
+
return output_hidden_states, *others
|
41 |
+
|
42 |
+
|
43 |
+
class XOmniModel(Qwen2Model, Qwen2PreTrainedModel):
|
44 |
+
model_type = "x-omni"
|
45 |
+
config_class = XOmniConfig
|
46 |
+
|
47 |
+
def __init__(self, config: XOmniConfig):
|
48 |
+
Qwen2PreTrainedModel.__init__(self, config)
|
49 |
+
self.padding_idx = -1
|
50 |
+
self.vocab_size = config.vocab_size
|
51 |
+
|
52 |
+
self.lm_embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
53 |
+
self.mm_embed_tokens = nn.Embedding(config.mm_vocab_size, config.hidden_size, self.padding_idx)
|
54 |
+
|
55 |
+
self.layers = nn.ModuleList(
|
56 |
+
[XOmniDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
57 |
+
)
|
58 |
+
self._attn_implementation = config._attn_implementation
|
59 |
+
self.lm_norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
60 |
+
self.mm_norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
61 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
62 |
+
|
63 |
+
self.gradient_checkpointing = False
|
64 |
+
# Initialize weights and apply final processing
|
65 |
+
self.post_init()
|
66 |
+
|
67 |
+
def get_input_embeddings(self):
|
68 |
+
return self.lm_embed_tokens
|
69 |
+
|
70 |
+
def set_input_embeddings(self, value):
|
71 |
+
self.lm_embed_tokens = value
|
72 |
+
|
73 |
+
def embed_tokens(self, input_ids):
|
74 |
+
(B, L), C = input_ids.shape, self.config.hidden_size
|
75 |
+
multimodal_mask = input_ids >= self.config.vocab_size
|
76 |
+
lm_input_ids = input_ids[~multimodal_mask][None, :]
|
77 |
+
mm_input_ids = input_ids[multimodal_mask][None, :] - self.config.vocab_size
|
78 |
+
lm_embeds = self.lm_embed_tokens(lm_input_ids)
|
79 |
+
mm_embeds = self.mm_embed_tokens(mm_input_ids)
|
80 |
+
|
81 |
+
inputs_embeds = lm_embeds.new_empty((B, L, C))
|
82 |
+
multimodal_mask = multimodal_mask[:, :, None].expand_as(inputs_embeds)
|
83 |
+
inputs_embeds[~multimodal_mask] = lm_embeds.reshape(-1)
|
84 |
+
inputs_embeds[multimodal_mask] = mm_embeds.reshape(-1)
|
85 |
+
|
86 |
+
inputs_embeds = torch.cat([inputs_embeds, multimodal_mask.to(inputs_embeds.dtype)], dim=-1)
|
87 |
+
return inputs_embeds
|
88 |
+
|
89 |
+
def norm(self, hidden_states):
|
90 |
+
hidden_states, multimodal_mask = torch.split(hidden_states, hidden_states.shape[-1] // 2, dim=-1)
|
91 |
+
return torch.where(multimodal_mask.bool(), self.mm_norm(hidden_states), self.lm_norm(hidden_states))
|
92 |
+
|
93 |
+
|
94 |
+
class XOmniForCausalLM(Qwen2ForCausalLM):
|
95 |
+
model_type = "x-omni"
|
96 |
+
config_class = XOmniConfig
|
97 |
+
|
98 |
+
_keys_to_ignore_on_load_missing = r'image_tokenizer\.*'
|
99 |
+
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__(config)
|
102 |
+
self.model = XOmniModel(config)
|
103 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
104 |
+
self.mm_head = nn.Linear(config.hidden_size, config.mm_vocab_size, bias=False)
|
105 |
+
|
106 |
+
self.generation_mode = 'text'
|
107 |
+
# Initialize weights and apply final processing
|
108 |
+
self.post_init()
|
109 |
+
|
110 |
+
@property
|
111 |
+
def device(self):
|
112 |
+
return next(iter(self.parameters())).device
|
113 |
+
|
114 |
+
def init_vision(self, flux_pipe_path):
|
115 |
+
self.som_token = self.config.mm_special_tokens[0]
|
116 |
+
self.eom_token = self.config.mm_special_tokens[1]
|
117 |
+
self.img_token = self.config.mm_special_tokens[2]
|
118 |
+
|
119 |
+
self.vision_config = SimpleNamespace(**self.config.vision_config)
|
120 |
+
self.transform_config = SimpleNamespace(**self.vision_config.transform)
|
121 |
+
self.encoder_config = SimpleNamespace(**self.vision_config.encoder)
|
122 |
+
self.decoder_config = SimpleNamespace(**self.vision_config.decoder)
|
123 |
+
|
124 |
+
dtype_map = {'float32': torch.float32, 'float16': torch.float16, 'bfloat16': torch.bfloat16}
|
125 |
+
self.vision_dtype = dtype_map[self.vision_config.dtype]
|
126 |
+
|
127 |
+
self.image_transform = create_anyres_preprocess(**self.vision_config.transform)
|
128 |
+
|
129 |
+
self.encoder_config.siglip_path = os.path.join(self.name_or_path, self.encoder_config.siglip_path) if os.path.isdir(self.name_or_path) else hf_hub_download(repo_id=self.name_or_path, filename=self.encoder_config.siglip_path)
|
130 |
+
self.encoder_config.projector_path = os.path.join(self.name_or_path, self.encoder_config.projector_path) if os.path.isdir(self.name_or_path) else hf_hub_download(repo_id=self.name_or_path, filename=self.encoder_config.projector_path)
|
131 |
+
|
132 |
+
self.image_tokenizer = SiglipTokenizer(**vars(self.encoder_config))
|
133 |
+
self.image_tokenizer.to(self.device, self.vision_dtype)
|
134 |
+
|
135 |
+
self.decoder_pipe = FluxPipelineWithSigLIP.from_pretrained(
|
136 |
+
flux_pipe_path,
|
137 |
+
torch_dtype=self.vision_dtype,
|
138 |
+
)
|
139 |
+
self.decoder_pipe.transformer = FluxTransformer2DModelWithSigLIP.from_pretrained(
|
140 |
+
self.name_or_path,
|
141 |
+
siglip_channels=self.encoder_config.z_channels,
|
142 |
+
torch_dtype=self.vision_dtype,
|
143 |
+
subfolder=self.decoder_config.model_path,
|
144 |
+
)
|
145 |
+
|
146 |
+
self.decoder_pipe.set_progress_bar_config(disable=True)
|
147 |
+
self.decoder_pipe.to(self.device)
|
148 |
+
|
149 |
+
def set_generation_mode(self, mode):
|
150 |
+
assert mode in ('text', 'image'), f'Invalid generation mode: {mode}'
|
151 |
+
self.generation_mode = mode
|
152 |
+
|
153 |
+
def mmencode(self, tokenizer, texts=None, images=None, **kwargs):
|
154 |
+
texts = texts or []
|
155 |
+
images = images or []
|
156 |
+
doc = ''
|
157 |
+
while len(texts) > 0 or len(images) > 0:
|
158 |
+
if len(texts) > 0:
|
159 |
+
doc += texts.pop(0)
|
160 |
+
if len(images) > 0:
|
161 |
+
doc += self.tokenize_image(images.pop(0))
|
162 |
+
return tokenizer.encode(doc, **kwargs)
|
163 |
+
|
164 |
+
def mmdecode(self, tokenizer, token_ids, force_text=None, **kwargs):
|
165 |
+
force_text = force_text or []
|
166 |
+
if isinstance(token_ids, torch.Tensor):
|
167 |
+
if len(token_ids.shape) == 2:
|
168 |
+
assert token_ids.shape[0] == 1
|
169 |
+
token_ids = token_ids[0]
|
170 |
+
assert len(token_ids.shape) == 1
|
171 |
+
else:
|
172 |
+
if not isinstance(token_ids[0], int):
|
173 |
+
assert len(token_ids) == 1
|
174 |
+
token_ids = token_ids[0]
|
175 |
+
assert isinstance(token_ids[0], int)
|
176 |
+
|
177 |
+
doc = tokenizer.decode(token_ids, **kwargs)
|
178 |
+
doc = doc.replace(tokenizer.pad_token, '')
|
179 |
+
doc = doc.replace('<SEP>', '')
|
180 |
+
texts, images = [], []
|
181 |
+
text_image_chunks = doc.split(self.eom_token)
|
182 |
+
for chunk in text_image_chunks:
|
183 |
+
text, image_str = chunk.split(self.som_token) \
|
184 |
+
if self.som_token in chunk else (chunk, '')
|
185 |
+
texts.append(text)
|
186 |
+
if self.img_token in image_str:
|
187 |
+
image_meta, token_str = image_str.split(self.img_token)
|
188 |
+
H, W = tuple(map(int, image_meta.split(' ')))
|
189 |
+
token_ids = list(map(
|
190 |
+
lambda x: int(x.split('>')[0]),
|
191 |
+
token_str.split('<MM-Token-')[1:H*W+1],
|
192 |
+
))
|
193 |
+
if len(force_text) > 0:
|
194 |
+
image = self.detokenize_image([force_text.pop(0)], images, token_ids, (H, W))
|
195 |
+
else:
|
196 |
+
image = self.detokenize_image(texts, images, token_ids, (H, W))
|
197 |
+
images.append(image)
|
198 |
+
return texts, images
|
199 |
+
|
200 |
+
@torch.no_grad()
|
201 |
+
def tokenize_image(self, image):
|
202 |
+
assert hasattr(self, 'image_tokenizer'), 'Please call "init_vision" before that.'
|
203 |
+
|
204 |
+
image_str = self.som_token
|
205 |
+
image = self.image_transform(image)
|
206 |
+
assert image is not None, f'Unsupported image aspect ratio (max {self.transform_config.max_aspect_ratio}) or image resolution is too low (min {self.transform_config.min_short_size})'
|
207 |
+
|
208 |
+
image = image[None, ...].to(self.device, self.vision_dtype)
|
209 |
+
tokens = self.image_tokenizer.encode(image)
|
210 |
+
B, H, W = tokens.shape
|
211 |
+
tokens = tokens.view(B, -1).cpu().tolist()[0]
|
212 |
+
token_str = ''.join(map(lambda x: '<MM-Token-{token_id}>'.format(token_id=x), tokens))
|
213 |
+
image_str = f'{self.som_token}{H} {W}{self.img_token}{token_str}{self.eom_token}'
|
214 |
+
return image_str
|
215 |
+
|
216 |
+
@torch.no_grad()
|
217 |
+
def detokenize_image(self, texts, images, token_ids, shape):
|
218 |
+
assert hasattr(self, 'image_tokenizer'), 'Please call "init_vision" before that.'
|
219 |
+
assert len(texts) == 1 and len(images) == 0, 'Only support one image per sample.'
|
220 |
+
H, W = shape
|
221 |
+
tokens = torch.tensor(token_ids, device=self.device, dtype=torch.long)
|
222 |
+
latents = self.image_tokenizer.decode(tokens, (1, H, W, self.encoder_config.codebook_dim))
|
223 |
+
upscale_factor = self.decoder_config.upscale_factor
|
224 |
+
latents = latents.reshape(*latents.shape[:2], -1).transpose(1, 2).contiguous()
|
225 |
+
image = self.decoder_pipe(
|
226 |
+
latents,
|
227 |
+
[texts[0]],
|
228 |
+
negative_prompt=[''],
|
229 |
+
height=H * upscale_factor, width=W * upscale_factor,
|
230 |
+
num_inference_steps=self.decoder_config.num_inference_steps,
|
231 |
+
guidance_scale=1.0,
|
232 |
+
true_cfg_scale=self.decoder_config.cfg_scale,
|
233 |
+
true_cfg_scale_2=self.decoder_config.cfg_scale_2,
|
234 |
+
).images[0]
|
235 |
+
|
236 |
+
|
237 |
+
return image
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
input_ids: torch.LongTensor = None,
|
242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
243 |
+
position_ids: Optional[torch.LongTensor] = None,
|
244 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
245 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
246 |
+
labels: Optional[torch.LongTensor] = None,
|
247 |
+
use_cache: Optional[bool] = None,
|
248 |
+
output_attentions: Optional[bool] = None,
|
249 |
+
output_hidden_states: Optional[bool] = None,
|
250 |
+
return_dict: Optional[bool] = None,
|
251 |
+
cache_position: Optional[torch.LongTensor] = None,
|
252 |
+
num_logits_to_keep: int = 0,
|
253 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
254 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
255 |
+
output_hidden_states = (
|
256 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
257 |
+
)
|
258 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
259 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
260 |
+
outputs = self.model(
|
261 |
+
input_ids=input_ids,
|
262 |
+
attention_mask=attention_mask,
|
263 |
+
position_ids=position_ids,
|
264 |
+
past_key_values=past_key_values,
|
265 |
+
inputs_embeds=inputs_embeds,
|
266 |
+
use_cache=use_cache,
|
267 |
+
output_attentions=output_attentions,
|
268 |
+
output_hidden_states=output_hidden_states,
|
269 |
+
return_dict=return_dict,
|
270 |
+
cache_position=cache_position,
|
271 |
+
)
|
272 |
+
|
273 |
+
hidden_states = outputs[0]
|
274 |
+
hidden_states = hidden_states[:, -num_logits_to_keep:, :]
|
275 |
+
logits = hidden_states.new_full(
|
276 |
+
(*hidden_states.shape[:-1], self.config.vocab_size + self.config.mm_vocab_size),
|
277 |
+
torch.finfo(hidden_states.dtype).min
|
278 |
+
)
|
279 |
+
if self.generation_mode == 'text':
|
280 |
+
logits[:, :, :self.config.vocab_size] = self.lm_head(hidden_states)
|
281 |
+
else:
|
282 |
+
logits[:, :, self.config.vocab_size:self.config.vocab_size + self.config.image_vocab_size] = self.mm_head(hidden_states)[:, :, :self.config.image_vocab_size]
|
283 |
+
|
284 |
+
logits = logits.float()
|
285 |
+
|
286 |
+
loss = None
|
287 |
+
if labels is not None:
|
288 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
289 |
+
logits = logits.float()
|
290 |
+
# Shift so that tokens < n predict n
|
291 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
292 |
+
shift_labels = labels[..., 1:].contiguous()
|
293 |
+
# Flatten the tokens
|
294 |
+
loss_fct = nn.CrossEntropyLoss()
|
295 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
296 |
+
shift_labels = shift_labels.view(-1)
|
297 |
+
# Enable model parallelism
|
298 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
299 |
+
loss = loss_fct(shift_logits, shift_labels)
|
300 |
+
|
301 |
+
if not return_dict:
|
302 |
+
output = (logits,) + outputs[1:]
|
303 |
+
return (loss,) + output if loss is not None else output
|
304 |
+
|
305 |
+
return CausalLMOutputWithPast(
|
306 |
+
loss=loss,
|
307 |
+
logits=logits,
|
308 |
+
past_key_values=outputs.past_key_values,
|
309 |
+
hidden_states=outputs.hidden_states,
|
310 |
+
attentions=outputs.attentions,
|
311 |
+
)
|
312 |
+
|
313 |
+
|
314 |
+
AutoModel.register(XOmniConfig, XOmniModel)
|
315 |
+
AutoModelForCausalLM.register(XOmniConfig, XOmniForCausalLM)
|
special_tokens_map.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0f6cd9880d5d8ffdd4761e68e770a51845e4021966bc93d1558c67d83e55fe8
|
3 |
+
size 14625209
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vit/siglip_vq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:225aa2d41094ee6c83d2d184d2b6cc9cdadb4f72c1a94501f916cffd42d3b567
|
3 |
+
size 249612138
|
vit/vit_g.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:250be9ba1a52a5b1365cfd79276cbf022df63577eed5d9cc234f8603d06ef626
|
3 |
+
size 2376032176
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|