Diffusers
Safetensors
x-omni
custom_code
File size: 14,426 Bytes
19854ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
from types import SimpleNamespace
from typing import Tuple, List, Optional, Union

import torch
import torch.nn as nn

from huggingface_hub import hf_hub_download
from transformers import Qwen2ForCausalLM, AutoModel, AutoModelForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm, Qwen2RotaryEmbedding, Qwen2DecoderLayer, Qwen2Model, Qwen2PreTrainedModel

from .configuration_xomni import XOmniConfig
from .modeling_siglip_tokenizer import create_anyres_preprocess, SiglipTokenizer
from .modeling_siglip_flux import FluxTransformer2DModelWithSigLIP, FluxPipelineWithSigLIP
from .modeling_vit import create_siglip_vit


class XOmniDecoderLayer(Qwen2DecoderLayer):
    def __init__(self, config: XOmniConfig, layer_idx: int):
        super().__init__(config, layer_idx)
        self.layer_idx = layer_idx
        self.is_lm_layer = config.num_mm_adap_layers <= layer_idx < config.num_hidden_layers - config.num_mm_head_layers

    def forward(
        self,
        hidden_states: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        hidden_states, multimodal_mask = torch.split(hidden_states, hidden_states.shape[-1] // 2, dim=-1)
        if self.is_lm_layer:
            output_hidden_states, *others = super().forward(hidden_states, **kwargs)
            output_hidden_states = torch.cat([output_hidden_states, multimodal_mask], dim=-1)
            return output_hidden_states, *others
        
        # mm_hidden_states = torch.where(multimodal_mask.bool(), hidden_states, torch.zeros_like(hidden_states))
        output_hidden_states, *others = super().forward(hidden_states, **kwargs)
        output_hidden_states = torch.where(multimodal_mask.bool(), output_hidden_states, hidden_states)
        output_hidden_states = torch.cat([output_hidden_states, multimodal_mask], dim=-1)
        return output_hidden_states, *others


class XOmniModel(Qwen2Model, Qwen2PreTrainedModel):
    model_type = "x-omni"
    config_class = XOmniConfig

    def __init__(self, config: XOmniConfig):
        Qwen2PreTrainedModel.__init__(self, config)
        self.padding_idx = -1
        self.vocab_size = config.vocab_size
        
        self.lm_embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.mm_embed_tokens = nn.Embedding(config.mm_vocab_size, config.hidden_size, self.padding_idx)

        self.layers = nn.ModuleList(
            [XOmniDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.lm_norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mm_norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Qwen2RotaryEmbedding(config=config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.lm_embed_tokens

    def set_input_embeddings(self, value):
        self.lm_embed_tokens = value

    def embed_tokens(self, input_ids):
        (B, L), C = input_ids.shape, self.config.hidden_size
        multimodal_mask = input_ids >= self.config.vocab_size
        lm_input_ids = input_ids[~multimodal_mask][None, :]
        mm_input_ids = input_ids[multimodal_mask][None, :] - self.config.vocab_size
        lm_embeds = self.lm_embed_tokens(lm_input_ids)
        mm_embeds = self.mm_embed_tokens(mm_input_ids)

        inputs_embeds = lm_embeds.new_empty((B, L, C))
        multimodal_mask = multimodal_mask[:, :, None].expand_as(inputs_embeds)
        inputs_embeds[~multimodal_mask] = lm_embeds.reshape(-1)
        inputs_embeds[multimodal_mask] = mm_embeds.reshape(-1)

        inputs_embeds = torch.cat([inputs_embeds, multimodal_mask.to(inputs_embeds.dtype)], dim=-1)
        return inputs_embeds

    def norm(self, hidden_states):
        hidden_states, multimodal_mask = torch.split(hidden_states, hidden_states.shape[-1] // 2, dim=-1)
        return torch.where(multimodal_mask.bool(), self.mm_norm(hidden_states), self.lm_norm(hidden_states))


class XOmniForCausalLM(Qwen2ForCausalLM):
    model_type = "x-omni"
    config_class = XOmniConfig
    
    _keys_to_ignore_on_load_missing = r'image_tokenizer\.*'

    def __init__(self, config):
        super().__init__(config)
        self.model = XOmniModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.mm_head = nn.Linear(config.hidden_size, config.mm_vocab_size, bias=False)
        
        self.generation_mode = 'text'
        # Initialize weights and apply final processing
        self.post_init()

    @property
    def device(self):
        return next(iter(self.parameters())).device
    
    def init_vision(self, flux_pipe_path):
        self.som_token = self.config.mm_special_tokens[0]
        self.eom_token = self.config.mm_special_tokens[1]
        self.img_token = self.config.mm_special_tokens[2]

        self.vision_config = SimpleNamespace(**self.config.vision_config)
        self.transform_config = SimpleNamespace(**self.vision_config.transform)
        self.encoder_config = SimpleNamespace(**self.vision_config.encoder)
        self.decoder_config = SimpleNamespace(**self.vision_config.decoder)

        dtype_map = {'float32': torch.float32, 'float16': torch.float16, 'bfloat16': torch.bfloat16}
        self.vision_dtype = dtype_map[self.vision_config.dtype]

        self.image_transform = create_anyres_preprocess(**self.vision_config.transform)
        
        self.encoder_config.siglip_path = os.path.join(self.name_or_path, self.encoder_config.siglip_path) if os.path.isdir(self.name_or_path) else hf_hub_download(repo_id=self.name_or_path, filename=self.encoder_config.siglip_path)
        self.encoder_config.projector_path = os.path.join(self.name_or_path, self.encoder_config.projector_path) if os.path.isdir(self.name_or_path) else hf_hub_download(repo_id=self.name_or_path, filename=self.encoder_config.projector_path)

        self.image_tokenizer = SiglipTokenizer(**vars(self.encoder_config))
        self.image_tokenizer.to(self.device, self.vision_dtype)

        self.decoder_pipe = FluxPipelineWithSigLIP.from_pretrained(
            flux_pipe_path, 
            torch_dtype=self.vision_dtype,
        )
        self.decoder_pipe.transformer = FluxTransformer2DModelWithSigLIP.from_pretrained(
            self.name_or_path, 
            siglip_channels=self.encoder_config.z_channels, 
            torch_dtype=self.vision_dtype,
            subfolder=self.decoder_config.model_path,
        )

        self.decoder_pipe.set_progress_bar_config(disable=True)
        self.decoder_pipe.to(self.device)

    def set_generation_mode(self, mode):
        assert mode in ('text', 'image'), f'Invalid generation mode: {mode}'
        self.generation_mode = mode

    def mmencode(self, tokenizer, texts=None, images=None, **kwargs):
        texts = texts or []
        images = images or []
        doc = ''
        while len(texts) > 0 or len(images) > 0:
            if len(texts) > 0:
                doc += texts.pop(0)
            if len(images) > 0:
                doc += self.tokenize_image(images.pop(0))
        return tokenizer.encode(doc, **kwargs)
    
    def mmdecode(self, tokenizer, token_ids, force_text=None, **kwargs):
        force_text = force_text or []
        if isinstance(token_ids, torch.Tensor):
            if len(token_ids.shape) == 2:
                assert token_ids.shape[0] == 1
                token_ids = token_ids[0]
            assert len(token_ids.shape) == 1
        else:
            if not isinstance(token_ids[0], int):
                assert len(token_ids) == 1
                token_ids = token_ids[0]
            assert isinstance(token_ids[0], int)
        
        doc = tokenizer.decode(token_ids, **kwargs)
        doc = doc.replace(tokenizer.pad_token, '')
        doc = doc.replace('<SEP>', '')
        texts, images = [], []
        text_image_chunks = doc.split(self.eom_token)
        for chunk in text_image_chunks:
            text, image_str = chunk.split(self.som_token) \
                if self.som_token in chunk else (chunk, '')
            texts.append(text)
            if self.img_token in image_str:
                image_meta, token_str = image_str.split(self.img_token)
                H, W = tuple(map(int, image_meta.split(' ')))
                token_ids = list(map(
                    lambda x: int(x.split('>')[0]),
                    token_str.split('<MM-Token-')[1:H*W+1],
                ))
                if len(force_text) > 0:
                    image = self.detokenize_image([force_text.pop(0)], images, token_ids, (H, W))
                else:
                    image = self.detokenize_image(texts, images, token_ids, (H, W))
                images.append(image)
        return texts, images
    
    @torch.no_grad()
    def tokenize_image(self, image):
        assert hasattr(self, 'image_tokenizer'), 'Please call "init_vision" before that.'

        image_str = self.som_token
        image = self.image_transform(image)
        assert image is not None, f'Unsupported image aspect ratio (max {self.transform_config.max_aspect_ratio}) or image resolution is too low (min {self.transform_config.min_short_size})'

        image = image[None, ...].to(self.device, self.vision_dtype)
        tokens = self.image_tokenizer.encode(image)
        B, H, W = tokens.shape
        tokens = tokens.view(B, -1).cpu().tolist()[0]
        token_str = ''.join(map(lambda x: '<MM-Token-{token_id}>'.format(token_id=x), tokens))
        image_str = f'{self.som_token}{H} {W}{self.img_token}{token_str}{self.eom_token}'
        return image_str
    
    @torch.no_grad()
    def detokenize_image(self, texts, images, token_ids, shape):
        assert hasattr(self, 'image_tokenizer'), 'Please call "init_vision" before that.'
        assert len(texts) == 1 and len(images) == 0, 'Only support one image per sample.'
        H, W = shape
        tokens = torch.tensor(token_ids, device=self.device, dtype=torch.long)
        latents = self.image_tokenizer.decode(tokens, (1, H, W, self.encoder_config.codebook_dim))
        upscale_factor = self.decoder_config.upscale_factor
        latents = latents.reshape(*latents.shape[:2], -1).transpose(1, 2).contiguous()
        image = self.decoder_pipe(
            latents,
            [texts[0]],
            negative_prompt=[''],
            height=H * upscale_factor, width=W * upscale_factor,
            num_inference_steps=self.decoder_config.num_inference_steps, 
            guidance_scale=1.0,
            true_cfg_scale=self.decoder_config.cfg_scale,
            true_cfg_scale_2=self.decoder_config.cfg_scale_2,
        ).images[0]


        return image
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        hidden_states = hidden_states[:, -num_logits_to_keep:, :]
        logits = hidden_states.new_full(
            (*hidden_states.shape[:-1], self.config.vocab_size + self.config.mm_vocab_size), 
            torch.finfo(hidden_states.dtype).min
        )
        if self.generation_mode == 'text':
            logits[:, :, :self.config.vocab_size] = self.lm_head(hidden_states)
        else:
            logits[:, :, self.config.vocab_size:self.config.vocab_size + self.config.image_vocab_size] = self.mm_head(hidden_states)[:, :, :self.config.image_vocab_size]
        
        logits = logits.float()

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


AutoModel.register(XOmniConfig, XOmniModel)
AutoModelForCausalLM.register(XOmniConfig, XOmniForCausalLM)