Diffusers
Safetensors
x-omni
custom_code
File size: 8,725 Bytes
19854ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232


import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from torchvision import transforms

from PIL import Image
from einops import rearrange

from .modeling_vit import create_siglip_vit


def create_anyres_preprocess(
    short_size=384, 
    long_size=1152, 
    patch_size=16, 
    random_ratio=None, 
    min_short_size=128, 
    max_aspect_ratio=3., 
    filtering=True
):

    def resize_and_filtering(pil_image):
        pil_image = pil_image.convert('RGB')
        width, height = pil_image.size
        ss, ls = min(width, height), max(width, height)
        aspect_ratio = ls / ss
        if filtering and (ss < min_short_size or aspect_ratio > max_aspect_ratio):
            return None
        target_width, target_height = width, height
        if random_ratio is not None:
            log_ratio = torch.log(torch.tensor(random_ratio))
            sqrt_ratio = torch.exp(0.5 * torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
            target_width = int(round(target_width * sqrt_ratio))
            target_height = int(round(target_height / sqrt_ratio))
        
        ss = min(target_width, target_height)
        if ss < short_size:
            target_width = target_width * (short_size / ss)
            target_height = target_height * (short_size / ss)
        
        ls = max(target_width, target_height)
        if ls > long_size:
            target_width = target_width * (long_size / ls)
            target_height = target_height * (long_size / ls)
        
        target_width = int(round(target_width / patch_size)) * patch_size
        target_height = int(round(target_height / patch_size)) * patch_size
        pil_image = pil_image.resize((target_width, target_height), resample=Image.BICUBIC)
        
        to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])
        return to_tensor(pil_image)

    transform = transforms.Lambda(resize_and_filtering)
    return transform


class IBQ(nn.Module):
    def __init__(self, n_e, e_dim, skip_quantization_prob=0.0, quantization_temp=2.0, beta=0.25, sane_index_shape=False, l2_norm=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.quantization_temp = quantization_temp
        self.skip_quantization_prob = skip_quantization_prob
        self.beta = beta
        self.sane_index_shape = sane_index_shape
        self.l2_norm = l2_norm

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
        if self.l2_norm:
            self.embedding.weight.data = F.normalize(self.embedding.weight.data, p=2, dim=-1)
    
    def forward(self, z, temp=None, rescale_logits=False, return_logits=False, **kwargs):
        assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
        assert rescale_logits == False, "Only for interface compatible with Gumbel"
        assert return_logits == False, "Only for interface compatible with Gumbel"
        # reshape z -> (batch, height, width, channel) and flatten
        z = rearrange(z, 'b c h w -> b h w c').contiguous()
        assert z.shape[-1] == self.e_dim
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        if self.l2_norm:
            z = F.normalize(z, p=2, dim=-1)
            z_flattened = F.normalize(z_flattened, p=2, dim=-1)
            embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
        else:
            embedding = self.embedding.weight

        d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
            torch.sum(embedding**2, dim=1) - 2 * \
            torch.einsum('bd,dn->bn', z_flattened, torch.einsum('n d -> d n', embedding))
        
        if self.training:
            logits = -d / self.quantization_temp
            soft_one_hot = F.softmax(logits, dim=1)
            min_encoding_indices = soft_one_hot.max(1, keepdim=True)[1]
            hard_one_hot = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(1, min_encoding_indices, 1.0)
            one_hot = hard_one_hot - soft_one_hot.detach() + soft_one_hot

            z_q = einsum('b n, n d -> b d', one_hot, self.embedding.weight).view(z.shape)
            z_q_2 = einsum('b n, n d -> b d', hard_one_hot, self.embedding.weight).view(z.shape)

            # compute loss for embedding
            commit_loss = torch.mean((z_q - z) ** 2) + torch.mean((z_q_2.detach() - z) ** 2) + self.beta * \
                        torch.mean((z_q_2 - z.detach()) ** 2)
        else:
            min_encoding_indices = torch.argmin(d, dim=1)
            z_q = embedding[min_encoding_indices].view(z.shape)
            commit_loss = None
        
        if self.training and self.skip_quantization_prob > 0.0:
            z_q = torch.where(
                torch.rand_like(z_q[:, 0:1, 0:1, 0:1]).expand_as(z_q) <= self.skip_quantization_prob,
                z, z_q,
            )
        
        # reshape back to match original input shape
        z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return (z_q, None, min_encoding_indices), commit_loss

    def get_codebook_entry(self, indices, bhwc):
        # shape specifying (batch, height, width, channel)
        # get quantized latent vectors
        z_q = self.embedding(indices)

        if bhwc is not None:
            z_q = z_q.view(bhwc)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class ResidualBlock(nn.Module):
    def __init__(self, channels, num_groups=32):
        super().__init__()
        self.conv1 = nn.Conv2d(channels, channels, 3, padding='same')
        self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=channels)
        self.activate = nn.GELU()
        self.conv2 = nn.Conv2d(channels, channels, 3, padding='same')
        self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=channels)
    
    def forward(self, x):
        res = x
        x = self.norm1(x)
        x = self.activate(x)
        x = self.conv1(x)
        x = self.norm2(x)
        x = self.activate(x)
        x = self.conv2(x)
        return x + res


class VQConvProjector(nn.Module):
    def __init__(
        self, 
        z_channels=1536, 
        codebook_size=16384, 
        codebook_dim=2048, 
        conv_layers=2,
        with_norm=True,
        skip_quant_prob=0.1,
    ):
        super().__init__()
        self.quant_conv = nn.Conv2d(z_channels, codebook_dim, 1)
        self.quantize = IBQ(codebook_size, codebook_dim, skip_quant_prob, sane_index_shape=True)
        self.post_quant_conv = nn.Conv2d(codebook_dim, z_channels, 1)
        block = ResidualBlock
        self.post_conv = nn.Sequential(*[block(z_channels) for _ in range(conv_layers)])
    
    def forward(self, x, h, w):
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
        z = self.quant_conv(x)
        (z_q, _, _), codebook_loss = self.quantize(z)
        z = self.post_quant_conv(z_q)
        z = self.post_conv(z)
        z = rearrange(z, 'b c h w -> b (h w) c')
        return z, codebook_loss
    
    def encode(self, x, h, w):
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
        z = self.quant_conv(x)
        (_, _, tokens), _ = self.quantize(z)
        return tokens
    
    def decode(self, tokens, bhwc):
        z_q = self.quantize.get_codebook_entry(tokens, bhwc)
        z = self.post_quant_conv(z_q)
        z = self.post_conv(z)        
        return z


class SiglipTokenizer(nn.Module):
    def __init__(
        self, 
        siglip_name, 
        siglip_path, 
        projector_path, 
        z_channels=1536, 
        codebook_size=16384, 
        codebook_dim=2048, 
        with_norm=True
    ):
        super().__init__()
        self.vit = create_siglip_vit(model_name=siglip_name, path=siglip_path)
        self.vqproj = VQConvProjector(
            z_channels=z_channels, 
            codebook_size=codebook_size, 
            codebook_dim=codebook_dim, 
            with_norm=with_norm
        )
        self.vqproj.load_state_dict(torch.load(projector_path, map_location='cpu'), strict=True)

    def encode(self, x):
        features, (h, w), _ = self.vit(x)
        tokens = self.vqproj.encode(features, h, w)
        return tokens
    
    def decode(self, tokens, bhwc):
        return self.vqproj.decode(tokens, bhwc)