DenseSR / test_shadow.py
VanLinLin's picture
birth
3f7c489
raw
history blame
12 kB
import numpy as np
import os
import argparse
from tqdm import tqdm
from torch.utils.data.distributed import DistributedSampler
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.nn.functional as F
import random
# from utils.loader import get_validation_data
from utils.loader import get_test_data
import utils
import cv2
import torch.distributed as dist
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
from skimage.metrics import structural_similarity as ssim_loss
parser = argparse.ArgumentParser(description='RGB denoising evaluation on the validation set of SIDD')
parser.add_argument('--input_dir', default='test_dir',
type=str, help='Directory of validation images')
parser.add_argument('--result_dir', default='./output_dir',
type=str, help='Directory for results')
parser.add_argument('--weights', default='ACVLab_shadow.pth'
,type=str, help='Path to weights')
# parser.add_argument('--arch', default='ShadowFormer', type=str, help='arch')
parser.add_argument('--arch', type=str, default='ShadowFormerFreq', help='archtechture')
parser.add_argument('--batch_size', default=1, type=int, help='Batch size for dataloader')
parser.add_argument('--save_images', action='store_true', default=False, help='Save denoised images in result directory')
parser.add_argument('--cal_metrics', action='store_true', default=False, help='Measure denoised images with GT')
parser.add_argument('--embed_dim', type=int, default=32, help='number of data loading workers')
parser.add_argument('--win_size', type=int, default=16, help='number of data loading workers')
parser.add_argument('--token_projection', type=str, default='linear', help='linear/conv token projection')
parser.add_argument('--token_mlp', type=str,default='leff', help='ffn/leff token mlp')
parser.add_argument('--train_ps', type=int, default=256, help='patch size of training sample')
parser.add_argument("--local-rank", type=int)
args = parser.parse_args()
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
class SlidingWindowInference:
def __init__(self, window_size=512, overlap=64, img_multiple_of=64):
self.window_size = window_size
self.overlap = overlap
self.img_multiple_of = img_multiple_of
def _pad_input(self, x, h_pad, w_pad):
"""Handle padding using reflection padding"""
return F.pad(x, (0, w_pad, 0, h_pad), 'reflect')
def __call__(self, model, input_, point, normal, dino_net, device):
# Save original dimensions
original_height, original_width = input_.shape[2], input_.shape[3]
# print(f"Original size: {original_height}x{original_width}")
# Calculate minimum dimensions needed (at least window_size and multiple of img_multiple_of)
H = max(self.window_size,
((original_height + self.img_multiple_of - 1) // self.img_multiple_of) * self.img_multiple_of)
W = max(self.window_size,
((original_width + self.img_multiple_of - 1) // self.img_multiple_of) * self.img_multiple_of)
# print(f"Target padded size: {H}x{W}")
# Calculate required padding
padh = H - original_height
padw = W - original_width
# print(f"Padding: h={padh}, w={padw}")
# Pad all inputs
input_pad = self._pad_input(input_, padh, padw)
point_pad = self._pad_input(point, padh, padw)
normal_pad = self._pad_input(normal, padh, padw)
# If image was smaller than window_size, process it as a single window
if original_height <= self.window_size and original_width <= self.window_size:
# print("Image smaller than window size, processing as single padded window")
# For DINO features
DINO_patch_size = 14
h_size = H * DINO_patch_size // 8
w_size = W * DINO_patch_size // 8
UpSample_window = torch.nn.UpsamplingBilinear2d(size=(h_size, w_size))
# Get DINO features
with torch.no_grad():
input_DINO = UpSample_window(input_pad)
dino_features = dino_net.module.get_intermediate_layers(input_DINO, 4, True)
# Model inference
with torch.cuda.amp.autocast():
restored = model(input_pad, dino_features, point_pad, normal_pad)
# Crop back to original size
output = restored[:, :, :original_height, :original_width]
return output
# For larger images, proceed with sliding window approach
stride = self.window_size - self.overlap
h_steps = (H - self.window_size + stride - 1) // stride + 1
w_steps = (W - self.window_size + stride - 1) // stride + 1
# print(f"Steps: h={h_steps}, w={w_steps}")
# Create output tensor and counter
output = torch.zeros_like(input_pad)
count = torch.zeros_like(input_pad)
for h_idx in range(h_steps):
for w_idx in range(w_steps):
# Calculate current window position
h_start = min(h_idx * stride, H - self.window_size)
w_start = min(w_idx * stride, W - self.window_size)
h_end = h_start + self.window_size
w_end = w_start + self.window_size
# Get current window
input_window = input_pad[:, :, h_start:h_end, w_start:w_end]
point_window = point_pad[:, :, h_start:h_end, w_start:w_end]
normal_window = normal_pad[:, :, h_start:h_end, w_start:w_end]
# print(f"Processing window at ({h_idx}, {w_idx}): {input_window.shape}")
# For DINO features
DINO_patch_size = 14
h_size = self.window_size * DINO_patch_size // 8
w_size = self.window_size * DINO_patch_size // 8
UpSample_window = torch.nn.UpsamplingBilinear2d(size=(h_size, w_size))
# Get DINO features
with torch.no_grad():
input_DINO = UpSample_window(input_window)
dino_features = dino_net.module.get_intermediate_layers(input_DINO, 4, True)
# Model inference
with torch.cuda.amp.autocast():
restored = model(input_window, dino_features, point_window, normal_window)
# Create weight mask for smooth transition
weight = torch.ones_like(restored)
if self.overlap > 0:
# Create gradual weights for overlap regions
for i in range(self.overlap):
ratio = i / self.overlap
weight[:, :, i, :] *= ratio
weight[:, :, -(i+1), :] *= ratio
weight[:, :, :, i] *= ratio
weight[:, :, :, -(i+1)] *= ratio
# Accumulate results and weights
output[:, :, h_start:h_end, w_start:w_end] += restored * weight
count[:, :, h_start:h_end, w_start:w_end] += weight
# Normalize output
output = output / (count + 1e-6)
# Crop back to original size
output = output[:, :, :original_height, :original_width]
return output
utils.mkdir(args.result_dir)
# ######### Set Seeds ###########
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
torch.cuda.manual_seed_all(1234)
def worker_init_fn(worker_id):
random.seed(1234 + worker_id)
g = torch.Generator()
g.manual_seed(1234)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
######### Model ###########
model_restoration = utils.get_arch(args)
model_restoration.to(device)
model_restoration.eval()
DINO_Net = torch.hub.load('./dinov2', 'dinov2_vitl14', source='local')
DINO_Net.to(device)
DINO_Net.eval()
######### Load ###########
utils.load_checkpoint(model_restoration, args.weights)
print("===>Testing using weights: ", args.weights)
######### DDP ###########
model_restoration = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_restoration).to(device)
model_restoration = DDP(model_restoration, device_ids=[local_rank], output_device=local_rank)
DINO_Net = DDP(DINO_Net, device_ids=[local_rank], output_device=local_rank)
######### Test ###########
img_multiple_of = 8 * args.win_size
DINO_patch_size = 14
def UpSample(img):
upsample = nn.UpsamplingBilinear2d(
size=((int)(img.shape[2] * (DINO_patch_size / 8)),
(int)(img.shape[3] * (DINO_patch_size / 8))))
return upsample(img)
img_options_train = {'patch_size':args.train_ps}
test_dataset = get_test_data(args.input_dir, False)
test_sampler = DistributedSampler(test_dataset, shuffle=False)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, num_workers=0, sampler=test_sampler, drop_last=False, worker_init_fn=worker_init_fn, generator=g)
with torch.no_grad():
psnr_val_rgb_list = []
psnr_val_mask_list = []
ssim_val_rgb_list = []
rmse_val_rgb_list = []
for ii, data_test in enumerate(tqdm(test_loader), 0):
# rgb_gt = data_test[0].numpy().squeeze().transpose((1, 2, 0))
rgb_noisy = data_test[1].to(device)
point = data_test[2].to(device)
normal = data_test[3].to(device)
filenames = data_test[4]
# Pad the input if not_multiple_of win_size * 8
# height, width = rgb_noisy.shape[2], rgb_noisy.shape[3]
# H, W = ((height + img_multiple_of) // img_multiple_of) * img_multiple_of, (
# (width + img_multiple_of) // img_multiple_of) * img_multiple_of
# padh = H - height if height % img_multiple_of != 0 else 0
# padw = W - width if width % img_multiple_of != 0 else 0
# rgb_noisy = F.pad(rgb_noisy, (0, padw, 0, padh), 'reflect')
# point = F.pad(point, (0, padw, 0, padh), 'reflect')
# normal = F.pad(normal, (0, padw, 0, padh), 'reflect')
# print(f'{rgb_noisy.shape=} {point.shape=} {normal.shape=}')
# UpSample_val = nn.UpsamplingBilinear2d(
# size=((int)(rgb_noisy.shape[2] * (DINO_patch_size / 8)),
# (int)(rgb_noisy.shape[3] * (DINO_patch_size / 8))))
# with torch.cuda.amp.autocast():
# # DINO_V2
# input_DINO = UpSample_val(rgb_noisy)
# dino_mat_features = DINO_Net.module.get_intermediate_layers(input_DINO, 4, True)
# rgb_restored = model_restoration(rgb_noisy, dino_mat_features, point, normal)
sliding_window = SlidingWindowInference(
window_size=512, # 與訓練相同的 patch size
overlap=64, # 相應調整 overlap
img_multiple_of=8 * args.win_size
)
with torch.cuda.amp.autocast():
rgb_restored = sliding_window(
model=model_restoration,
input_=rgb_noisy,
point=point,
normal=normal,
dino_net=DINO_Net,
device=device
)
rgb_restored = torch.clamp(rgb_restored, 0.0, 1.0)
# rgb_restored = rgb_restored[:, : ,:height, :width]
rgb_restored = torch.clamp(rgb_restored, 0, 1).cpu().numpy().squeeze().transpose((1, 2, 0))
if args.save_images:
utils.save_img(rgb_restored * 255.0, os.path.join(args.result_dir, filenames[0]))