DenseSR: Image Shadow Removal as Dense Prediction
Paper
•
2507.16472
•
Published
•
1
Yu-Fan Lin1, Chia-ming Lee1, Chih-Chung Hsu2
1National Cheng Kung University 2National Yang Ming Chiao Tung University
If you find this project useful, please consider citing us and giving us a star.
@misc{lin2025densesrimageshadowremoval,
title={DenseSR: Image Shadow Removal as Dense Prediction},
author={Yu-Fan Lin and Chia-Ming Lee and Chih-Chung Hsu},
year={2025},
eprint={2507.16472},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.16472},
}
conda create -n ntire_shadow python=3.9 -y
conda activate ntire_shadow
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
You can download WSRD dataset from here.
test_dir
├── origin <- Put the shadow affected images in this folder
│ ├── 0000.png
│ ├── 0001.png
│ ├── ...
├── depth
├── normal
output_dir
├── 0000.png
├── 0001.png
├──...
git clone https://github.com/DepthAnything/Depth-Anything-V2.git
Download the pretrain model of depth anything v2
Run get_depth_normap.py to create depth and normal map.
python get_depth_normap.py
Now folder structure will be
test_dir
├── origin
│ ├── 0000.png
│ ├── 0001.png
│ ├── ...
├── depth
│ ├── 0000.npy
│ ├── 0001.npy
│ ├── ...
├── ormal
│ ├── 0000.npy
│ ├── 0001.npy
│ ├── ...
output_dir
├── 0000.png
├── 0001.png
├──...
git clone https://github.com/facebookresearch/dinov2.git
gdown 1of3KLSVhaXlsX3jasuwdPKBwb4O4hGZD
run_test.sh to get inference results.bash run_test.sh
✔ 2025/08/11 Release WSRD pretrained model
✔ 2025/08/11 Release inference code
✔ 2025/07/05 Paper Accepted by ACMMM'25
◻ Release training code
◻ Release other pretrained model
This code repository is release under MIT License.
Totally Free + Zero Barriers + No Login Required