File size: 8,370 Bytes
3f7c489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch


class TestTimeAugmentation:
    """Test-Time Augmentation for image restoration models"""
    
    def __init__(self, model, dino_net, device, use_flip=True, use_rot=True, use_multi_scale=False, scales=None):
        """
        Args:
            model: The model to apply TTA to
            dino_net: DINO feature extractor
            device: Device to run inference on
            use_flip: Whether to use horizontal and vertical flips
            use_rot: Whether to use 90-degree rotations
            use_multi_scale: Whether to use multi-scale testing
            scales: List of scales to use for multi-scale testing, e.g. [0.8, 1.0, 1.2]
        """
        self.model = model
        self.dino_net = dino_net
        self.device = device
        self.use_flip = use_flip
        self.use_rot = use_rot
        self.use_multi_scale = use_multi_scale
        self.scales = scales or [1.0]
        
    def _apply_augmentation(self, image, point, normal, aug_type):
        """Apply single augmentation to input images
        
        Args:
            image: Input RGB image
            point: Point map
            normal: Normal map
            aug_type: Augmentation type string (e.g., 'original', 'h_flip', etc.)
            
        Returns:
            Augmented versions of image, point map and normal map
        """
        if aug_type == 'original':
            return image, point, normal
            
        elif aug_type == 'h_flip':
            # Horizontal flip
            img_aug = torch.flip(image, dims=[3])
            point_aug = torch.flip(point, dims=[3])
            normal_aug = torch.flip(normal, dims=[3])
            # For normal map, x direction needs to be flipped
            normal_aug[:, 0, :, :] = -normal_aug[:, 0, :, :]
            return img_aug, point_aug, normal_aug
            
        elif aug_type == 'v_flip':
            # Vertical flip
            img_aug = torch.flip(image, dims=[2])
            point_aug = torch.flip(point, dims=[2])
            normal_aug = torch.flip(normal, dims=[2])
            # For normal map, y direction needs to be flipped
            normal_aug[:, 1, :, :] = -normal_aug[:, 1, :, :]
            return img_aug, point_aug, normal_aug
            
        elif aug_type == 'rot90':
            # 90-degree rotation
            img_aug = torch.rot90(image, k=1, dims=[2, 3])
            point_aug = torch.rot90(point, k=1, dims=[2, 3])
            normal_aug = torch.rot90(normal, k=1, dims=[2, 3])
            # Swap x and y channels in normal map and negate x
            normal_x = -normal_aug[:, 1, :, :].clone()
            normal_y = normal_aug[:, 0, :, :].clone()
            normal_aug[:, 0, :, :] = normal_x
            normal_aug[:, 1, :, :] = normal_y
            return img_aug, point_aug, normal_aug
            
        elif aug_type == 'rot180':
            # 180-degree rotation
            img_aug = torch.rot90(image, k=2, dims=[2, 3])
            point_aug = torch.rot90(point, k=2, dims=[2, 3])
            normal_aug = torch.rot90(normal, k=2, dims=[2, 3])
            # For normal map, both x and y directions need to be flipped
            normal_aug[:, 0, :, :] = -normal_aug[:, 0, :, :]
            normal_aug[:, 1, :, :] = -normal_aug[:, 1, :, :]
            return img_aug, point_aug, normal_aug
            
        elif aug_type == 'rot270':
            # 270-degree rotation
            img_aug = torch.rot90(image, k=3, dims=[2, 3])
            point_aug = torch.rot90(point, k=3, dims=[2, 3])
            normal_aug = torch.rot90(normal, k=3, dims=[2, 3])
            # Swap x and y channels in normal map and negate y
            normal_x = normal_aug[:, 1, :, :].clone()
            normal_y = -normal_aug[:, 0, :, :].clone()
            normal_aug[:, 0, :, :] = normal_x
            normal_aug[:, 1, :, :] = normal_y
            return img_aug, point_aug, normal_aug
        
        else:
            raise ValueError(f"Unknown augmentation type: {aug_type}")
    
    def _reverse_augmentation(self, result, aug_type):
        """Reverse the augmentation on the result
        
        Args:
            result: Model output to reverse augmentation on
            aug_type: Augmentation type string
            
        Returns:
            De-augmented result
        """
        if aug_type == 'original':
            return result
            
        elif aug_type == 'h_flip':
            return torch.flip(result, dims=[3])
            
        elif aug_type == 'v_flip':
            return torch.flip(result, dims=[2])
            
        elif aug_type == 'rot90':
            return torch.rot90(result, k=3, dims=[2, 3])
            
        elif aug_type == 'rot180':
            return torch.rot90(result, k=2, dims=[2, 3])
            
        elif aug_type == 'rot270':
            return torch.rot90(result, k=1, dims=[2, 3])
        
        else:
            raise ValueError(f"Unknown augmentation type: {aug_type}")
    
    def __call__(self, sliding_window, input_img, point, normal):
        """
        Apply TTA to the model and return ensemble result
        
        Args:
            sliding_window: SlidingWindowInference class instance
            input_img: Input RGB image [B, C, H, W]
            point: Point map [B, C, H, W]
            normal: Normal map [B, C, H, W]
            
        Returns:
            Ensemble result with TTA [B, C, H, W]
        """
        # Define all augmentations to use
        augmentations = ['original']
        if self.use_flip:
            augmentations.extend(['h_flip', 'v_flip'])
        if self.use_rot:
            augmentations.extend(['rot90', 'rot180', 'rot270'])
        
        # Initialize the result tensor
        ensemble_result = torch.zeros_like(input_img)
        ensemble_weight = 0.0
        
        # For each scale and augmentation
        for scale in self.scales:
            scale_weight = 1.0
            if scale != 1.0:
                # Resize inputs for multi-scale testing
                h, w = input_img.shape[2], input_img.shape[3]
                new_h, new_w = int(h * scale), int(w * scale)
                
                # Resize all inputs
                resize_fn = torch.nn.functional.interpolate
                input_img_scaled = resize_fn(input_img, size=(new_h, new_w), mode='bilinear', align_corners=False)
                point_scaled = resize_fn(point, size=(new_h, new_w), mode='bilinear', align_corners=False)
                normal_scaled = resize_fn(normal, size=(new_h, new_w), mode='bilinear', align_corners=False)
                
                # Normalize normal vectors after resizing
                normal_norm = torch.sqrt(torch.sum(normal_scaled**2, dim=1, keepdim=True) + 1e-6)
                normal_scaled = normal_scaled / normal_norm
            else:
                input_img_scaled = input_img
                point_scaled = point
                normal_scaled = normal
            
            # Apply each augmentation
            for aug_type in augmentations:
                # Apply augmentation
                img_aug, point_aug, normal_aug = self._apply_augmentation(
                    input_img_scaled, point_scaled, normal_scaled, aug_type
                )
                
                # Run model inference with sliding window
                with torch.cuda.amp.autocast():
                    result_aug = sliding_window(
                        model=self.model,
                        input_=img_aug,
                        point=point_aug,
                        normal=normal_aug,
                        dino_net=self.dino_net,
                        device=self.device
                    )
                
                # Reverse augmentation on the result
                result_aug = self._reverse_augmentation(result_aug, aug_type)
                
                # Resize back to original size if using multi-scale
                if scale != 1.0:
                    result_aug = resize_fn(result_aug, size=(h, w), mode='bilinear', align_corners=False)
                
                # Add to ensemble
                ensemble_result += result_aug * scale_weight
                ensemble_weight += scale_weight
        
        # Average results
        ensemble_result = ensemble_result / ensemble_weight
        
        return ensemble_result