File size: 4,583 Bytes
3f7c489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import numpy as np
from collections import OrderedDict
import pandas as pd
import os
from tqdm import tqdm
import cv2
from utils.misc import split_np_imgrid, get_np_imgrid


def cal_ber(tn, tp, fn, fp):
    return  0.5*(fp/(tn+fp) + fn/(fn+tp))

def cal_acc(tn, tp, fn, fp):
    return (tp + tn) / (tp + tn + fp + fn)


def get_binary_classification_metrics(pred, gt, threshold=None):
    if threshold is not None:
        gt = (gt > threshold)
        pred = (pred > threshold)
    TP = np.logical_and(gt, pred).sum()
    TN = np.logical_and(np.logical_not(gt), np.logical_not(pred)).sum()
    FN = np.logical_and(gt, np.logical_not(pred)).sum()
    FP = np.logical_and(np.logical_not(gt), pred).sum()
    BER = cal_ber(TN, TP, FN, FP)
    ACC = cal_acc(TN, TP, FN, FP)
    return OrderedDict( [('TP', TP),
                        ('TN', TN),
                        ('FP', FP),
                        ('FN', FN),
                        ('BER', BER),
                        ('ACC', ACC)]
                      )


def evaluate(res_root, pred_id, gt_id, nimg, nrow, threshold):
    img_names  = os.listdir(res_root)
    score_dict = OrderedDict()

    for img_name in img_names:
        im_grid_path = os.path.join(res_root, img_name)
        im_grid = cv2.imread(im_grid_path)
        ims = split_np_imgrid(im_grid, nimg, nrow)
        pred = ims[pred_id]
        gt = ims[gt_id]
        score_dict[img_name] = get_binary_classification_metrics(pred,
                                                                 gt,
                                                                 threshold)
            
    df = pd.DataFrame(score_dict)
    df['ave'] = df.mean(axis=1)

    tn = df['ave']['TN']
    tp = df['ave']['TP']
    fn = df['ave']['FN']
    fp = df['ave']['FP']

    pos_err = (1 - tp / (tp + fn)) * 100
    neg_err = (1 - tn / (tn + fp)) * 100
    ber = (pos_err + neg_err) / 2
    acc = (tn + tp) / (tn + tp + fn + fp)

    return pos_err, neg_err, ber, acc, df







###############################################

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.sum = 0
        self.count = 0

    def update(self, val, weight=1):
        self.sum += val * weight
        self.count += weight

    def average(self):
        if self.count == 0:
            return 0
        else:
            return self.sum / self.count

    def clear(self):
        self.sum = 0
        self.count = 0

def compute_cm_torch(y_pred, y_label, n_class):
    mask = (y_label >= 0) & (y_label < n_class)
    hist = torch.bincount(n_class * y_label[mask] + y_pred[mask],
                          minlength=n_class**2).reshape(n_class, n_class)
    return hist

class MyConfuseMatrixMeter(AverageMeter):
    """More Clear Confusion Matrix Meter"""
    def __init__(self, n_class):
        super(MyConfuseMatrixMeter, self).__init__()
        self.n_class = n_class

    def update_cm(self, y_pred, y_label, weight=1):
        y_label = y_label.type(torch.int64)
        val = compute_cm_torch(y_pred=y_pred.flatten(), y_label=y_label.flatten(),
                               n_class=self.n_class)
        self.update(val, weight)

    # def get_scores_binary(self):
    #     assert self.n_class == 2, "this function can only be called for binary calssification problem"
    #     tn, fp, fn, tp = self.sum.flatten()
    #     eps = torch.finfo(torch.float32).eps
    #     precision = tp / (tp + fp + eps)
    #     recall = tp / (tp + fn + eps)
    #     f1 = 2*recall*precision / (recall + precision + eps)
    #     iou = tp / (tp + fn + fp + eps)
    #     oa = (tp + tn) / (tp + tn + fn + fp + eps)
    #     score_dict = {}
    #     score_dict['precision'] = precision.item()
    #     score_dict['recall'] = recall.item()
    #     score_dict['f1'] = f1.item()
    #     score_dict['iou'] = iou.item()
    #     score_dict['oa'] = oa.item()
    #     return score_dict
    def get_scores_binary(self):
        assert self.n_class == 2, "this function can only be called for binary calssification problem"
        tn, fp, fn, tp = self.sum.flatten()
        eps = torch.finfo(torch.float32).eps
        pos_err = (1 - tp / (tp + fn + eps)) * 100
        neg_err = (1 - tn / (tn + fp + eps)) * 100
        ber = (pos_err + neg_err) / 2
        acc = (tn + tp) / (tn + tp + fn + fp + eps)
        score_dict = {}
        score_dict['pos_err'] = pos_err
        score_dict['neg_err'] = neg_err
        score_dict['ber'] = ber
        score_dict['acc'] = acc
        return score_dict