Llama 3.2 3B Function Calling Model
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct for function calling tasks.
Model Details
- Base Model: Llama 3.2 3B Instruct
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Dataset: Salesforce/xlam-function-calling-60k (1000 samples)
- Training: 2 epochs with learning rate 2e-5
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("TurkishCodeMan/llama3.2-3b-intruct-function-calling")
tokenizer = AutoTokenizer.from_pretrained("TurkishCodeMan/llama3.2-3b-intruct-function-calling")
prompt = '''<|system|>
Available functions:
- get_weather: Gets current weather for a location
GPT 4 Correct user:
<|user|>
What's the weather in Tokyo?
GPT 4 correct assistant:'''
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64, do_sample=False)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Details
- Learning Rate: 2e-5
- Batch Size: 2 (per device)
- Gradient Accumulation: 8 steps
- LoRA Rank: 8
- LoRA Alpha: 16
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
Performance
The model demonstrates excellent function calling capabilities:
- Correct function selection
- Proper argument formatting
- Professional response structure
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TurkishCodeMan/llama3.2-3b-intruct-function-calling
Base model
meta-llama/Llama-3.2-3B-Instruct