|  | --- | 
					
						
						|  | license: bigscience-bloom-rail-1.0 | 
					
						
						|  | --- | 
					
						
						|  | This model is based on [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1). To make it more accessible and efficient for certain Chinese , we have pruned its original vocabulary from 250,880 tokens to 46,145 tokens using Chinese corpus data as follow [bloom-6b4-zh](https://huggingface.co/Langboat/bloom-6b4-zh). This reduction in vocabulary size has helped to significantly reduce the GPU memory usage required to run the model. As a result, the total number of parameters in the model is now 6 billion 4. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | 基于 [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1),修建embeddings层到 46145,主要保留中文相关的tokens映射。修建后参数为6B4。 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # How to use | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import BloomTokenizerFast, BloomForCausalLM | 
					
						
						|  |  | 
					
						
						|  | tokenizer = BloomTokenizerFast.from_pretrained('enze/bloomz-6b4-zh') | 
					
						
						|  | model = BloomForCausalLM.from_pretrained('enze/bloomz-6b4-zh') | 
					
						
						|  |  | 
					
						
						|  | print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt')))) | 
					
						
						|  | ``` |