|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: |
|
- meta-llama/Llama-3.2-1B-Instruct |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# Llama-3.2-1B-Instruct LoRA Instruction Classifier |
|
|
|
### Model Description |
|
|
|
- **Base Model:** [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) |
|
- **Adapter Method:** LoRA (Low-Rank Adaptation) |
|
- **Task:** Instruction classification into 10 labels |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from peft import PeftModel |
|
|
|
# Load the tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("Turalll/llama-1b-lora-instruct-classifier") |
|
|
|
# Load the base model (you must have access to LLaMA-1B) |
|
base_model = AutoModelForSequenceClassification.from_pretrained("path_to_llama-3.2-1B-Instruct_base_model", num_labels=10) |
|
|
|
# Load the LoRA adapter |
|
model = PeftModel.from_pretrained(base_model, "Turalll/llama-1b-lora-instruct-classifier") |
|
|
|
# Example inference |
|
text = "Your input text here" |
|
|
|
|
|
## Custom label_ids:labels map |
|
id2id = { |
|
0: "Health and Wellbeing", |
|
1: "Cinema", |
|
2: "Environmental Science", |
|
3: "Software Development", |
|
4: "Fashion", |
|
5: "Career Development", |
|
6: "Culinary Guide", |
|
7: "Cybersecurity", |
|
8: "Economics", |
|
9: "Music" |
|
} |
|
|
|
## Tokenize the input |
|
inputs = tokenizer( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=128, |
|
return_tensors="pt" |
|
) |
|
|
|
## Move inputs to the same device as the model |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
## Get predictions |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class_id = logits.argmax(dim=-1).item() |
|
|
|
## Map predicted class ID to label |
|
predicted_label = id2label[predicted_class_id] |
|
|
|
print(f"Predicted label: {predicted_label}") |
|
|
|
``` |