Update handler.py
Browse files- handler.py +154 -230
handler.py
CHANGED
|
@@ -3,9 +3,7 @@ import torch
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import glob
|
| 6 |
-
import
|
| 7 |
-
from transformers import PreTrainedTokenizerFast, PreTrainedModel
|
| 8 |
-
from transformers.models.qwen2 import Qwen2Config, Qwen2ForCausalLM
|
| 9 |
import logging
|
| 10 |
|
| 11 |
# Set up logging
|
|
@@ -15,228 +13,131 @@ logger = logging.getLogger(__name__)
|
|
| 15 |
class EndpointHandler:
|
| 16 |
def __init__(self, path: str = ""):
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
"""
|
| 20 |
logger.info(f"Loading model from {path}")
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
#
|
| 24 |
-
os.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
logger.info(f"
|
| 38 |
-
|
| 39 |
-
# Load tokenizer
|
| 40 |
-
self.tokenizer = self.
|
| 41 |
logger.info("Tokenizer loaded successfully")
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
self.model = self.
|
| 45 |
logger.info("Model loaded successfully")
|
| 46 |
|
| 47 |
except Exception as e:
|
| 48 |
logger.error(f"Failed to initialize: {str(e)}")
|
| 49 |
raise e
|
| 50 |
|
| 51 |
-
def
|
| 52 |
-
"""
|
| 53 |
-
try:
|
| 54 |
-
import shutil
|
| 55 |
-
cache_dirs = ['/tmp/transformers_cache', '/tmp/hf_home']
|
| 56 |
-
for cache_dir in cache_dirs:
|
| 57 |
-
if os.path.exists(cache_dir):
|
| 58 |
-
shutil.rmtree(cache_dir)
|
| 59 |
-
logger.info(f"Cleared cache: {cache_dir}")
|
| 60 |
-
except Exception as e:
|
| 61 |
-
logger.warning(f"Could not clear cache: {e}")
|
| 62 |
-
|
| 63 |
-
def _discover_model_files(self, base_path: str) -> str:
|
| 64 |
-
"""Find where the actual model files are located"""
|
| 65 |
-
|
| 66 |
-
logger.info(f"Searching for model files in: {base_path}")
|
| 67 |
-
|
| 68 |
-
# List all contents
|
| 69 |
-
if os.path.exists(base_path):
|
| 70 |
-
contents = os.listdir(base_path)
|
| 71 |
-
logger.info(f"Base directory contents: {contents}")
|
| 72 |
-
|
| 73 |
-
# Check for config.json in base path
|
| 74 |
-
if "config.json" in contents:
|
| 75 |
-
logger.info("Found config.json in base directory")
|
| 76 |
-
return base_path
|
| 77 |
-
|
| 78 |
-
# Check models subdirectories
|
| 79 |
-
for item in contents:
|
| 80 |
-
if os.path.isdir(os.path.join(base_path, item)):
|
| 81 |
-
sub_path = os.path.join(base_path, item)
|
| 82 |
-
sub_contents = os.listdir(sub_path)
|
| 83 |
-
logger.info(f"Subdirectory {item}: {sub_contents}")
|
| 84 |
-
|
| 85 |
-
if "config.json" in sub_contents:
|
| 86 |
-
logger.info(f"Found config.json in {item} subdirectory")
|
| 87 |
-
return sub_path
|
| 88 |
-
|
| 89 |
-
# Search recursively
|
| 90 |
-
for root, dirs, files in os.walk(base_path):
|
| 91 |
-
if "config.json" in files:
|
| 92 |
-
logger.info(f"Found config.json in {root}")
|
| 93 |
-
return root
|
| 94 |
-
|
| 95 |
-
raise FileNotFoundError(f"No config.json found in {base_path} or subdirectories")
|
| 96 |
-
|
| 97 |
-
def _load_config_manually(self, model_path: str) -> Qwen2Config:
|
| 98 |
-
"""Load and create config manually"""
|
| 99 |
-
|
| 100 |
-
config_path = os.path.join(model_path, "config.json")
|
| 101 |
-
logger.info(f"Loading config from: {config_path}")
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
#
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
|
| 116 |
-
return config
|
| 117 |
|
| 118 |
-
def
|
| 119 |
-
"""Load tokenizer
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
if 'tokenizer.json' in tokenizer_files:
|
| 130 |
-
# Load from tokenizer.json
|
| 131 |
-
tokenizer_path = os.path.join(model_path, 'tokenizer.json')
|
| 132 |
-
logger.info(f"Loading tokenizer from {tokenizer_path}")
|
| 133 |
-
|
| 134 |
-
tokenizer = PreTrainedTokenizerFast(
|
| 135 |
-
tokenizer_file=tokenizer_path,
|
| 136 |
-
unk_token="<|endoftext|>",
|
| 137 |
-
bos_token="<|endoftext|>",
|
| 138 |
-
eos_token="<|endoftext|>"
|
| 139 |
)
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
logger.warning("No tokenizer.json found, creating basic tokenizer")
|
| 143 |
-
from transformers import AutoTokenizer
|
| 144 |
|
| 145 |
-
# Try to load from the model path with local_files_only
|
| 146 |
try:
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
trust_remote_code=True,
|
| 150 |
-
local_files_only=True
|
| 151 |
-
cache_dir='/tmp/tokenizer_cache' # Use temp cache
|
| 152 |
)
|
| 153 |
-
except Exception as
|
| 154 |
-
logger.
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
def
|
| 165 |
-
"""
|
| 166 |
-
|
| 167 |
-
logger.info("Creating Qwen2ForCausalLM with config")
|
| 168 |
-
model = Qwen2ForCausalLM(config)
|
| 169 |
-
|
| 170 |
-
# Find safetensors files
|
| 171 |
-
safetensors_files = glob.glob(os.path.join(model_path, "*.safetensors"))
|
| 172 |
-
logger.info(f"Found {len(safetensors_files)} safetensors files")
|
| 173 |
-
|
| 174 |
-
if not safetensors_files:
|
| 175 |
-
raise FileNotFoundError("No safetensors files found")
|
| 176 |
-
|
| 177 |
-
# Load weights manually with memory optimization
|
| 178 |
-
from safetensors.torch import load_file
|
| 179 |
-
|
| 180 |
-
# Convert to half precision before loading weights to save memory
|
| 181 |
-
model = model.half()
|
| 182 |
-
logger.info("Converted model to half precision")
|
| 183 |
-
|
| 184 |
-
# Load weights in chunks to avoid memory spikes
|
| 185 |
-
state_dict = {}
|
| 186 |
-
total_files = len(safetensors_files)
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
try:
|
| 192 |
-
#
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
import gc
|
| 206 |
-
gc.collect()
|
| 207 |
-
|
| 208 |
-
if torch.cuda.is_available():
|
| 209 |
-
torch.cuda.empty_cache()
|
| 210 |
-
|
| 211 |
-
logger.info(f"Loaded file {i+1}/{total_files}, current memory usage: {torch.cuda.memory_allocated() / 1024**3:.2f}GB")
|
| 212 |
-
|
| 213 |
-
except Exception as e:
|
| 214 |
-
logger.error(f"Failed to load file {file}: {e}")
|
| 215 |
-
raise e
|
| 216 |
-
|
| 217 |
-
logger.info(f"Total state dict keys: {len(state_dict)}")
|
| 218 |
-
|
| 219 |
-
# Load weights into model
|
| 220 |
-
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 221 |
-
|
| 222 |
-
if missing_keys:
|
| 223 |
-
logger.warning(f"Missing keys: {len(missing_keys)} keys missing")
|
| 224 |
-
logger.warning(f"First few missing: {missing_keys[:5]}")
|
| 225 |
-
|
| 226 |
-
if unexpected_keys:
|
| 227 |
-
logger.warning(f"Unexpected keys: {len(unexpected_keys)} unexpected keys")
|
| 228 |
-
logger.warning(f"First few unexpected: {unexpected_keys[:5]}")
|
| 229 |
-
|
| 230 |
-
# Clear state dict to free memory
|
| 231 |
-
del state_dict
|
| 232 |
-
gc.collect()
|
| 233 |
-
if torch.cuda.is_available():
|
| 234 |
-
torch.cuda.empty_cache()
|
| 235 |
-
|
| 236 |
-
# Move to GPU if available
|
| 237 |
-
if torch.cuda.is_available():
|
| 238 |
-
model = model.cuda()
|
| 239 |
-
logger.info(f"Model moved to GPU, final memory usage: {torch.cuda.memory_allocated() / 1024**3:.2f}GB")
|
| 240 |
|
| 241 |
model.eval()
|
| 242 |
return model
|
|
@@ -252,7 +153,7 @@ class EndpointHandler:
|
|
| 252 |
if not inputs:
|
| 253 |
return [{"error": "No input provided", "generated_text": ""}]
|
| 254 |
|
| 255 |
-
# Generation parameters
|
| 256 |
max_new_tokens = min(parameters.get("max_new_tokens", 512), 1024)
|
| 257 |
temperature = max(0.1, min(parameters.get("temperature", 0.7), 2.0))
|
| 258 |
top_p = max(0.1, min(parameters.get("top_p", 0.9), 1.0))
|
|
@@ -264,40 +165,63 @@ class EndpointHandler:
|
|
| 264 |
else:
|
| 265 |
formatted_input = f"<|im_start|>user\n{inputs}<|im_end|>\n<|im_start|>assistant\n"
|
| 266 |
|
| 267 |
-
# Tokenize
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
-
|
|
|
|
| 276 |
|
| 277 |
-
#
|
| 278 |
-
|
| 279 |
-
outputs = self.model.generate(
|
| 280 |
-
input_ids,
|
| 281 |
-
max_new_tokens=max_new_tokens,
|
| 282 |
-
temperature=temperature,
|
| 283 |
-
top_p=top_p,
|
| 284 |
-
do_sample=do_sample,
|
| 285 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
| 286 |
-
eos_token_id=self.tokenizer.eos_token_id,
|
| 287 |
-
use_cache=True
|
| 288 |
-
)
|
| 289 |
|
| 290 |
-
#
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
except Exception as e:
|
| 302 |
-
logger.error(f"
|
| 303 |
-
return [{"error": f"
|
|
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import glob
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 7 |
import logging
|
| 8 |
|
| 9 |
# Set up logging
|
|
|
|
| 13 |
class EndpointHandler:
|
| 14 |
def __init__(self, path: str = ""):
|
| 15 |
"""
|
| 16 |
+
Initialize handler with robust file discovery
|
| 17 |
"""
|
| 18 |
logger.info(f"Loading model from {path}")
|
| 19 |
|
| 20 |
try:
|
| 21 |
+
# Log directory contents to understand structure
|
| 22 |
+
if os.path.exists(path):
|
| 23 |
+
contents = os.listdir(path)
|
| 24 |
+
logger.info(f"Repository contents: {contents}")
|
| 25 |
+
|
| 26 |
+
# Look for model files in subdirectories
|
| 27 |
+
for item in contents:
|
| 28 |
+
item_path = os.path.join(path, item)
|
| 29 |
+
if os.path.isdir(item_path):
|
| 30 |
+
sub_contents = os.listdir(item_path)
|
| 31 |
+
logger.info(f"Directory {item}: {sub_contents}")
|
| 32 |
+
|
| 33 |
+
# Try to find the actual model path
|
| 34 |
+
model_path = self._find_model_path(path)
|
| 35 |
+
logger.info(f"Using model path: {model_path}")
|
| 36 |
+
|
| 37 |
+
# Load tokenizer - try multiple approaches
|
| 38 |
+
self.tokenizer = self._load_tokenizer(model_path, path)
|
| 39 |
logger.info("Tokenizer loaded successfully")
|
| 40 |
|
| 41 |
+
# Load model
|
| 42 |
+
self.model = self._load_model(model_path, path)
|
| 43 |
logger.info("Model loaded successfully")
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
logger.error(f"Failed to initialize: {str(e)}")
|
| 47 |
raise e
|
| 48 |
|
| 49 |
+
def _find_model_path(self, base_path: str) -> str:
|
| 50 |
+
"""Find the actual path containing model files"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Check if config.json is in base path
|
| 53 |
+
if os.path.exists(os.path.join(base_path, "config.json")):
|
| 54 |
+
return base_path
|
| 55 |
|
| 56 |
+
# Check models/huggingface subdirectory
|
| 57 |
+
hf_path = os.path.join(base_path, "models", "huggingface")
|
| 58 |
+
if os.path.exists(hf_path) and os.path.exists(os.path.join(hf_path, "config.json")):
|
| 59 |
+
return hf_path
|
| 60 |
|
| 61 |
+
# Check for any subdirectory with config.json
|
| 62 |
+
for root, dirs, files in os.walk(base_path):
|
| 63 |
+
if "config.json" in files:
|
| 64 |
+
return root
|
| 65 |
|
| 66 |
+
# Fallback to base path
|
| 67 |
+
return base_path
|
|
|
|
| 68 |
|
| 69 |
+
def _load_tokenizer(self, model_path: str, base_path: str):
|
| 70 |
+
"""Load tokenizer with fallback methods"""
|
| 71 |
|
| 72 |
+
try:
|
| 73 |
+
# Try direct loading from model path
|
| 74 |
+
logger.info(f"Trying to load tokenizer from {model_path}")
|
| 75 |
+
return AutoTokenizer.from_pretrained(
|
| 76 |
+
model_path,
|
| 77 |
+
trust_remote_code=True,
|
| 78 |
+
local_files_only=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
+
except Exception as e1:
|
| 81 |
+
logger.warning(f"Failed to load from {model_path}: {e1}")
|
|
|
|
|
|
|
| 82 |
|
|
|
|
| 83 |
try:
|
| 84 |
+
# Try loading from base path
|
| 85 |
+
logger.info(f"Trying to load tokenizer from {base_path}")
|
| 86 |
+
return AutoTokenizer.from_pretrained(
|
| 87 |
+
base_path,
|
| 88 |
trust_remote_code=True,
|
| 89 |
+
local_files_only=True
|
|
|
|
| 90 |
)
|
| 91 |
+
except Exception as e2:
|
| 92 |
+
logger.warning(f"Failed to load from {base_path}: {e2}")
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
# Try loading from Hugging Face Hub as fallback
|
| 96 |
+
logger.info("Using fallback tokenizer from Qwen2-7B-Instruct")
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 98 |
+
"Qwen/Qwen2-7B-Instruct",
|
| 99 |
+
trust_remote_code=True
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Set special tokens
|
| 103 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 104 |
+
return tokenizer
|
| 105 |
+
|
| 106 |
+
except Exception as e3:
|
| 107 |
+
logger.error(f"All tokenizer loading methods failed: {e3}")
|
| 108 |
+
raise e3
|
| 109 |
|
| 110 |
+
def _load_model(self, model_path: str, base_path: str):
|
| 111 |
+
"""Load model with fallback methods"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
try:
|
| 114 |
+
# Try direct loading from model path
|
| 115 |
+
logger.info(f"Trying to load model from {model_path}")
|
| 116 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 117 |
+
model_path,
|
| 118 |
+
torch_dtype=torch.float16,
|
| 119 |
+
device_map="auto",
|
| 120 |
+
trust_remote_code=True,
|
| 121 |
+
local_files_only=True,
|
| 122 |
+
low_cpu_mem_usage=True
|
| 123 |
+
)
|
| 124 |
+
except Exception as e1:
|
| 125 |
+
logger.warning(f"Failed to load from {model_path}: {e1}")
|
| 126 |
|
| 127 |
try:
|
| 128 |
+
# Try loading from base path
|
| 129 |
+
logger.info(f"Trying to load model from {base_path}")
|
| 130 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 131 |
+
base_path,
|
| 132 |
+
torch_dtype=torch.float16,
|
| 133 |
+
device_map="auto",
|
| 134 |
+
trust_remote_code=True,
|
| 135 |
+
local_files_only=True,
|
| 136 |
+
low_cpu_mem_usage=True
|
| 137 |
+
)
|
| 138 |
+
except Exception as e2:
|
| 139 |
+
logger.error(f"Model loading failed from both paths: {e2}")
|
| 140 |
+
raise e2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
model.eval()
|
| 143 |
return model
|
|
|
|
| 153 |
if not inputs:
|
| 154 |
return [{"error": "No input provided", "generated_text": ""}]
|
| 155 |
|
| 156 |
+
# Generation parameters with safety limits
|
| 157 |
max_new_tokens = min(parameters.get("max_new_tokens", 512), 1024)
|
| 158 |
temperature = max(0.1, min(parameters.get("temperature", 0.7), 2.0))
|
| 159 |
top_p = max(0.1, min(parameters.get("top_p", 0.9), 1.0))
|
|
|
|
| 165 |
else:
|
| 166 |
formatted_input = f"<|im_start|>user\n{inputs}<|im_end|>\n<|im_start|>assistant\n"
|
| 167 |
|
| 168 |
+
# Tokenize with error handling
|
| 169 |
+
try:
|
| 170 |
+
input_ids = self.tokenizer.encode(
|
| 171 |
+
formatted_input,
|
| 172 |
+
return_tensors="pt",
|
| 173 |
+
truncation=True,
|
| 174 |
+
max_length=3072
|
| 175 |
+
)
|
| 176 |
+
except Exception as e:
|
| 177 |
+
logger.error(f"Tokenization failed: {e}")
|
| 178 |
+
return [{"error": f"Tokenization failed: {str(e)}", "generated_text": ""}]
|
| 179 |
|
| 180 |
+
if input_ids.size(1) == 0:
|
| 181 |
+
return [{"error": "Empty input after tokenization", "generated_text": ""}]
|
| 182 |
|
| 183 |
+
# Move to model device
|
| 184 |
+
input_ids = input_ids.to(next(self.model.parameters()).device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
# Generate with error handling
|
| 187 |
+
try:
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
outputs = self.model.generate(
|
| 190 |
+
input_ids,
|
| 191 |
+
max_new_tokens=max_new_tokens,
|
| 192 |
+
temperature=temperature,
|
| 193 |
+
top_p=top_p,
|
| 194 |
+
do_sample=do_sample,
|
| 195 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 196 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 197 |
+
use_cache=True,
|
| 198 |
+
num_return_sequences=1
|
| 199 |
+
)
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Generation failed: {e}")
|
| 202 |
+
return [{"error": f"Generation failed: {str(e)}", "generated_text": ""}]
|
| 203 |
|
| 204 |
+
# Decode response
|
| 205 |
+
try:
|
| 206 |
+
generated_ids = outputs[0][input_ids.size(1):]
|
| 207 |
+
response = self.tokenizer.decode(
|
| 208 |
+
generated_ids,
|
| 209 |
+
skip_special_tokens=True
|
| 210 |
+
).strip()
|
| 211 |
+
|
| 212 |
+
# Clean up response
|
| 213 |
+
response = response.replace("<|im_end|>", "").strip()
|
| 214 |
+
|
| 215 |
+
return [{
|
| 216 |
+
"generated_text": response,
|
| 217 |
+
"generated_tokens": len(generated_ids),
|
| 218 |
+
"finish_reason": "eos_token" if self.tokenizer.eos_token_id in generated_ids else "length"
|
| 219 |
+
}]
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
logger.error(f"Decoding failed: {e}")
|
| 223 |
+
return [{"error": f"Decoding failed: {str(e)}", "generated_text": ""}]
|
| 224 |
|
| 225 |
except Exception as e:
|
| 226 |
+
logger.error(f"Inference error: {str(e)}")
|
| 227 |
+
return [{"error": f"Inference failed: {str(e)}", "generated_text": ""}]
|