Update handler.py
Browse files- handler.py +89 -86
handler.py
CHANGED
@@ -2,7 +2,8 @@ from typing import Dict, List, Any
|
|
2 |
import torch
|
3 |
import json
|
4 |
import os
|
5 |
-
from transformers import
|
|
|
6 |
import logging
|
7 |
|
8 |
# Set up logging
|
@@ -12,87 +13,105 @@ logger = logging.getLogger(__name__)
|
|
12 |
class EndpointHandler:
|
13 |
def __init__(self, path: str = ""):
|
14 |
"""
|
15 |
-
Initialize
|
16 |
-
Explicitly using Qwen2 classes to bypass auto-detection
|
17 |
"""
|
18 |
logger.info(f"Loading model from {path}")
|
19 |
|
20 |
try:
|
21 |
-
#
|
22 |
config_path = os.path.join(path, "config.json")
|
|
|
23 |
if os.path.exists(config_path):
|
24 |
with open(config_path, 'r') as f:
|
25 |
-
|
26 |
-
logger.info(f"
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
logger.warning("No config.json found
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
trust_remote_code=True,
|
35 |
-
padding_side="left"
|
36 |
-
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
self.tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
logger.info("Tokenizer loaded successfully")
|
43 |
|
44 |
-
# Load model
|
45 |
-
logger.info("Loading model
|
46 |
-
self.model = Qwen2ForCausalLM
|
47 |
-
path,
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
device_map="auto",
|
50 |
-
trust_remote_code=True,
|
51 |
-
low_cpu_mem_usage=True
|
52 |
-
)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
try:
|
61 |
-
logger.info("Attempting alternative loading method...")
|
62 |
-
|
63 |
-
# Use the models subdirectory path that we saw in your repo
|
64 |
-
model_path = os.path.join(path, "models", "huggingface") if os.path.exists(os.path.join(path, "models", "huggingface")) else path
|
65 |
-
|
66 |
-
self.tokenizer = Qwen2TokenizerFast.from_pretrained(
|
67 |
-
model_path,
|
68 |
-
trust_remote_code=True,
|
69 |
-
local_files_only=True
|
70 |
-
)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
torch_dtype=torch.float16,
|
78 |
-
device_map="auto",
|
79 |
-
trust_remote_code=True,
|
80 |
-
local_files_only=True
|
81 |
-
)
|
82 |
-
|
83 |
-
self.model.eval()
|
84 |
-
logger.info("Alternative loading successful")
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
91 |
"""
|
92 |
Handle inference requests
|
93 |
"""
|
94 |
try:
|
95 |
-
# Extract inputs and parameters
|
96 |
inputs = data.get("inputs", "")
|
97 |
parameters = data.get("parameters", {})
|
98 |
|
@@ -100,13 +119,12 @@ class EndpointHandler:
|
|
100 |
return [{"error": "No input provided", "generated_text": ""}]
|
101 |
|
102 |
# Generation parameters
|
103 |
-
max_new_tokens = min(parameters.get("max_new_tokens", 512), 1024)
|
104 |
-
temperature = max(0.1, min(parameters.get("temperature", 0.7), 2.0))
|
105 |
-
top_p = max(0.1, min(parameters.get("top_p", 0.9), 1.0))
|
106 |
do_sample = parameters.get("do_sample", True)
|
107 |
-
repetition_penalty = max(1.0, min(parameters.get("repetition_penalty", 1.1), 2.0))
|
108 |
|
109 |
-
# Format input
|
110 |
if inputs.startswith("<|im_start|>"):
|
111 |
formatted_input = inputs
|
112 |
else:
|
@@ -116,15 +134,12 @@ class EndpointHandler:
|
|
116 |
input_ids = self.tokenizer.encode(
|
117 |
formatted_input,
|
118 |
return_tensors="pt",
|
119 |
-
add_special_tokens=False,
|
120 |
truncation=True,
|
121 |
-
max_length=3072
|
122 |
)
|
123 |
|
124 |
-
if
|
125 |
-
|
126 |
-
|
127 |
-
input_ids = input_ids.to(self.model.device)
|
128 |
|
129 |
# Generate
|
130 |
with torch.no_grad():
|
@@ -134,23 +149,14 @@ class EndpointHandler:
|
|
134 |
temperature=temperature,
|
135 |
top_p=top_p,
|
136 |
do_sample=do_sample,
|
137 |
-
repetition_penalty=repetition_penalty,
|
138 |
pad_token_id=self.tokenizer.pad_token_id,
|
139 |
eos_token_id=self.tokenizer.eos_token_id,
|
140 |
-
use_cache=True
|
141 |
-
num_return_sequences=1
|
142 |
)
|
143 |
|
144 |
-
# Decode response
|
145 |
generated_ids = outputs[0][input_ids.size(1):]
|
146 |
-
response = self.tokenizer.decode(
|
147 |
-
generated_ids,
|
148 |
-
skip_special_tokens=True,
|
149 |
-
clean_up_tokenization_spaces=True
|
150 |
-
)
|
151 |
-
|
152 |
-
# Clean up response
|
153 |
-
response = response.strip()
|
154 |
response = response.replace("<|im_end|>", "").strip()
|
155 |
|
156 |
return [{
|
@@ -161,7 +167,4 @@ class EndpointHandler:
|
|
161 |
|
162 |
except Exception as e:
|
163 |
logger.error(f"Generation error: {str(e)}")
|
164 |
-
return [{
|
165 |
-
"error": f"Generation failed: {str(e)}",
|
166 |
-
"generated_text": ""
|
167 |
-
}]
|
|
|
2 |
import torch
|
3 |
import json
|
4 |
import os
|
5 |
+
from transformers import PreTrainedTokenizerFast, PreTrainedModel
|
6 |
+
from transformers.models.qwen2 import Qwen2Config, Qwen2ForCausalLM
|
7 |
import logging
|
8 |
|
9 |
# Set up logging
|
|
|
13 |
class EndpointHandler:
|
14 |
def __init__(self, path: str = ""):
|
15 |
"""
|
16 |
+
Initialize handler with manual model loading to bypass auto-detection
|
|
|
17 |
"""
|
18 |
logger.info(f"Loading model from {path}")
|
19 |
|
20 |
try:
|
21 |
+
# Manual config loading and creation
|
22 |
config_path = os.path.join(path, "config.json")
|
23 |
+
|
24 |
if os.path.exists(config_path):
|
25 |
with open(config_path, 'r') as f:
|
26 |
+
config_dict = json.load(f)
|
27 |
+
logger.info(f"Loaded config: {config_dict.get('model_type', 'UNKNOWN')}")
|
28 |
+
|
29 |
+
# Create Qwen2Config manually
|
30 |
+
config = Qwen2Config(**config_dict)
|
31 |
else:
|
32 |
+
logger.warning("No config.json found, using default Qwen2Config")
|
33 |
+
config = Qwen2Config()
|
34 |
+
|
35 |
+
# Load tokenizer manually without auto-detection
|
36 |
+
logger.info("Loading tokenizer manually...")
|
37 |
+
tokenizer_path = os.path.join(path, "tokenizer.json")
|
|
|
|
|
|
|
38 |
|
39 |
+
if os.path.exists(tokenizer_path):
|
40 |
+
# Load tokenizer from tokenizer.json directly
|
41 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path)
|
42 |
+
else:
|
43 |
+
# Try loading from vocab files
|
44 |
+
vocab_path = os.path.join(path, "vocab.json")
|
45 |
+
merges_path = os.path.join(path, "merges.txt")
|
46 |
+
|
47 |
+
if os.path.exists(vocab_path):
|
48 |
+
self.tokenizer = PreTrainedTokenizerFast(
|
49 |
+
tokenizer_file=None,
|
50 |
+
vocab_file=vocab_path,
|
51 |
+
merges_file=merges_path if os.path.exists(merges_path) else None
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
# Fallback: create basic tokenizer
|
55 |
+
from transformers import AutoTokenizer
|
56 |
+
logger.warning("Using fallback tokenizer loading...")
|
57 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
|
58 |
+
|
59 |
+
# Set special tokens
|
60 |
+
if not hasattr(self.tokenizer, 'pad_token') or self.tokenizer.pad_token is None:
|
61 |
+
self.tokenizer.pad_token = "<|endoftext|>"
|
62 |
+
self.tokenizer.pad_token_id = 151643
|
63 |
+
|
64 |
+
if not hasattr(self.tokenizer, 'eos_token') or self.tokenizer.eos_token is None:
|
65 |
+
self.tokenizer.eos_token = "<|endoftext|>"
|
66 |
+
self.tokenizer.eos_token_id = 151643
|
67 |
|
68 |
logger.info("Tokenizer loaded successfully")
|
69 |
|
70 |
+
# Load model manually with the config
|
71 |
+
logger.info("Loading model manually...")
|
72 |
+
self.model = Qwen2ForCausalLM(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Load state dict manually
|
75 |
+
safetensors_files = [f for f in os.listdir(path) if f.endswith('.safetensors')]
|
76 |
|
77 |
+
if safetensors_files:
|
78 |
+
logger.info(f"Loading weights from {len(safetensors_files)} safetensors files")
|
79 |
+
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
state_dict = {}
|
82 |
+
for file in sorted(safetensors_files):
|
83 |
+
file_path = os.path.join(path, file)
|
84 |
+
partial_state_dict = load_file(file_path)
|
85 |
+
state_dict.update(partial_state_dict)
|
86 |
|
87 |
+
# Load the state dict
|
88 |
+
missing_keys, unexpected_keys = self.model.load_state_dict(state_dict, strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
if missing_keys:
|
91 |
+
logger.warning(f"Missing keys: {missing_keys[:5]}...") # Show first 5
|
92 |
+
if unexpected_keys:
|
93 |
+
logger.warning(f"Unexpected keys: {unexpected_keys[:5]}...") # Show first 5
|
94 |
+
else:
|
95 |
+
logger.error("No safetensors files found!")
|
96 |
+
raise FileNotFoundError("No model weights found")
|
97 |
+
|
98 |
+
# Move to GPU and set to eval mode
|
99 |
+
self.model = self.model.half() # Convert to float16
|
100 |
+
if torch.cuda.is_available():
|
101 |
+
self.model = self.model.cuda()
|
102 |
+
self.model.eval()
|
103 |
+
|
104 |
+
logger.info("Model loaded successfully")
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Failed to load model: {str(e)}")
|
108 |
+
raise e
|
109 |
|
110 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
111 |
"""
|
112 |
Handle inference requests
|
113 |
"""
|
114 |
try:
|
|
|
115 |
inputs = data.get("inputs", "")
|
116 |
parameters = data.get("parameters", {})
|
117 |
|
|
|
119 |
return [{"error": "No input provided", "generated_text": ""}]
|
120 |
|
121 |
# Generation parameters
|
122 |
+
max_new_tokens = min(parameters.get("max_new_tokens", 512), 1024)
|
123 |
+
temperature = max(0.1, min(parameters.get("temperature", 0.7), 2.0))
|
124 |
+
top_p = max(0.1, min(parameters.get("top_p", 0.9), 1.0))
|
125 |
do_sample = parameters.get("do_sample", True)
|
|
|
126 |
|
127 |
+
# Format input
|
128 |
if inputs.startswith("<|im_start|>"):
|
129 |
formatted_input = inputs
|
130 |
else:
|
|
|
134 |
input_ids = self.tokenizer.encode(
|
135 |
formatted_input,
|
136 |
return_tensors="pt",
|
|
|
137 |
truncation=True,
|
138 |
+
max_length=3072
|
139 |
)
|
140 |
|
141 |
+
if torch.cuda.is_available():
|
142 |
+
input_ids = input_ids.cuda()
|
|
|
|
|
143 |
|
144 |
# Generate
|
145 |
with torch.no_grad():
|
|
|
149 |
temperature=temperature,
|
150 |
top_p=top_p,
|
151 |
do_sample=do_sample,
|
|
|
152 |
pad_token_id=self.tokenizer.pad_token_id,
|
153 |
eos_token_id=self.tokenizer.eos_token_id,
|
154 |
+
use_cache=True
|
|
|
155 |
)
|
156 |
|
157 |
+
# Decode response
|
158 |
generated_ids = outputs[0][input_ids.size(1):]
|
159 |
+
response = self.tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
response = response.replace("<|im_end|>", "").strip()
|
161 |
|
162 |
return [{
|
|
|
167 |
|
168 |
except Exception as e:
|
169 |
logger.error(f"Generation error: {str(e)}")
|
170 |
+
return [{"error": f"Generation failed: {str(e)}", "generated_text": ""}]
|
|
|
|
|
|