TomBombadyl's picture
Upload folder using huggingface_hub
692d5c6 verified
#!/usr/bin/env python3
"""
Basic inference example for Isaac Sim Robotics Qwen model.
This script demonstrates how to load and use the fine-tuned model
for Isaac Sim robotics queries.
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import argparse
import sys
import os
def load_model(model_path, device="auto", load_in_8bit=False):
"""
Load the Isaac Sim Robotics Qwen model.
Args:
model_path (str): Path to the model (local or HuggingFace hub)
device (str): Device to load model on ("auto", "cpu", "cuda")
load_in_8bit (bool): Whether to use 8-bit quantization
Returns:
tuple: (model, tokenizer)
"""
print(f"Loading model from: {model_path}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Set pad token if not present
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
if load_in_8bit:
try:
model = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_8bit=True,
device_map=device,
torch_dtype=torch.float16
)
except ImportError:
print("8-bit quantization not available. Install bitsandbytes.")
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.float16
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.float16
)
print("Model loaded successfully!")
return model, tokenizer
def generate_response(model, tokenizer, query, max_length=1024, temperature=0.7):
"""
Generate a response using the model.
Args:
model: The loaded model
tokenizer: The loaded tokenizer
query (str): The input query
max_length (int): Maximum length of generated response
temperature (float): Sampling temperature
Returns:
str: Generated response
"""
# Format query for Qwen2.5-Coder
formatted_query = f"<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant"
# Tokenize input
inputs = tokenizer(formatted_query, return_tensors="pt")
# Move to same device as model
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant response
if "<|im_start|>assistant" in response:
response = response.split("<|im_start|>assistant")[1].strip()
return response
def main():
parser = argparse.ArgumentParser(description="Isaac Sim Robotics Qwen Inference")
parser.add_argument(
"--model_path",
type=str,
default="TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1",
help="Path to model (local or HuggingFace hub)"
)
parser.add_argument(
"--device",
type=str,
default="auto",
choices=["auto", "cpu", "cuda"],
help="Device to use for inference"
)
parser.add_argument(
"--load_8bit",
action="store_true",
help="Use 8-bit quantization to reduce memory usage"
)
parser.add_argument(
"--max_length",
type=int,
default=1024,
help="Maximum length of generated response"
)
parser.add_argument(
"--temperature",
type=float,
default=0.7,
help="Sampling temperature"
)
parser.add_argument(
"--query",
type=str,
help="Query to ask (if not provided, will use interactive mode)"
)
args = parser.parse_args()
try:
# Load model
model, tokenizer = load_model(
args.model_path,
device=args.device,
load_in_8bit=args.load_8bit
)
if args.query:
# Single query mode
response = generate_response(
model, tokenizer, args.query, args.max_length, args.temperature
)
print(f"\nQuery: {args.query}")
print(f"Response:\n{response}")
else:
# Interactive mode
print("\n=== Isaac Sim Robotics Qwen Interactive Mode ===")
print("Type 'quit' to exit")
print("Example queries:")
print("- How do I create a differential drive robot in Isaac Sim?")
print("- How to add a depth camera to my robot?")
print("- What physics parameters should I use for a manipulator?")
print()
while True:
try:
query = input("Enter your Isaac Sim question: ").strip()
if query.lower() in ['quit', 'exit', 'q']:
break
if not query:
continue
print("Generating response...")
response = generate_response(
model, tokenizer, query, args.max_length, args.temperature
)
print(f"\nResponse:\n{response}\n")
except KeyboardInterrupt:
print("\nExiting...")
break
except Exception as e:
print(f"Error generating response: {e}")
except Exception as e:
print(f"Error loading model: {e}")
sys.exit(1)
if __name__ == "__main__":
main()