File size: 5,241 Bytes
692d5c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3
"""

CTransformers usage example for Isaac Sim Robotics Qwen model.



This script demonstrates how to use the model with CTransformers

for lightweight, memory-efficient inference.

"""

from ctransformers import AutoModelForCausalLM
import argparse
import sys

def load_model(model_path, model_type="qwen2", gpu_layers=0):
    """

    Load the Isaac Sim Robotics Qwen model using CTransformers.

    

    Args:

        model_path (str): Path to the CTransformers model

        model_type (str): Model architecture type

        gpu_layers (int): Number of layers to offload to GPU (0 = CPU only)

    

    Returns:

        AutoModelForCausalLM: Loaded model

    """
    print(f"Loading CTransformers model from: {model_path}")
    print(f"Model type: {model_type}, GPU layers: {gpu_layers}")
    
    try:
        model = AutoModelForCausalLM.from_pretrained(
            model_path,
            model_type=model_type,
            gpu_layers=gpu_layers,
            lib="avx2"  # Use AVX2 optimizations if available
        )
        print("Model loaded successfully!")
        return model
    except Exception as e:
        print(f"Error loading model: {e}")
        print("Make sure you have the CTransformers model files in the specified directory.")
        sys.exit(1)

def generate_response(model, query, max_length=1024, temperature=0.7):
    """

    Generate a response using the CTransformers model.

    

    Args:

        model: The loaded CTransformers model

        query (str): The input query

        max_length (int): Maximum length of generated response

        temperature (float): Sampling temperature

    

    Returns:

        str: Generated response

    """
    # Format query for Qwen2.5-Coder
    formatted_query = f"<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant"
    
    # Generate response
    response = model(
        formatted_query,
        max_new_tokens=max_length,
        temperature=temperature,
        do_sample=True,
        stop=["<|im_end|>", "<|im_start|>"]
    )
    
    # Extract only the assistant response
    if "<|im_start|>assistant" in response:
        response = response.split("<|im_start|>assistant")[1].strip()
    
    return response

def main():
    parser = argparse.ArgumentParser(description="Isaac Sim Robotics Qwen CTransformers Inference")
    parser.add_argument(
        "--model_path",
        type=str,
        default="models/ctransformers",
        help="Path to CTransformers model directory"
    )
    parser.add_argument(
        "--model_type",
        type=str,
        default="qwen2",
        help="Model architecture type"
    )
    parser.add_argument(
        "--gpu_layers",
        type=int,
        default=0,
        help="Number of layers to offload to GPU (0 = CPU only)"
    )
    parser.add_argument(
        "--max_length",
        type=int,
        default=1024,
        help="Maximum length of generated response"
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.7,
        help="Sampling temperature"
    )
    parser.add_argument(
        "--query",
        type=str,
        help="Query to ask (if not provided, will use interactive mode)"
    )
    
    args = parser.parse_args()
    
    try:
        # Load model
        model = load_model(
            args.model_path,
            model_type=args.model_type,
            gpu_layers=args.gpu_layers
        )
        
        if args.query:
            # Single query mode
            response = generate_response(
                model, args.query, args.max_length, args.temperature
            )
            print(f"\nQuery: {args.query}")
            print(f"Response:\n{response}")
        else:
            # Interactive mode
            print("\n=== Isaac Sim Robotics Qwen CTransformers Interactive Mode ===")
            print("Type 'quit' to exit")
            print("Example queries:")
            print("- How do I create a differential drive robot in Isaac Sim?")
            print("- How to add a depth camera to my robot?")
            print("- What physics parameters should I use for a manipulator?")
            print()
            
            while True:
                try:
                    query = input("Enter your Isaac Sim question: ").strip()
                    if query.lower() in ['quit', 'exit', 'q']:
                        break
                    if not query:
                        continue
                    
                    print("Generating response...")
                    response = generate_response(
                        model, query, args.max_length, args.temperature
                    )
                    print(f"\nResponse:\n{response}\n")
                    
                except KeyboardInterrupt:
                    print("\nExiting...")
                    break
                except Exception as e:
                    print(f"Error generating response: {e}")
    
    except Exception as e:
        print(f"Error: {e}")
        sys.exit(1)

if __name__ == "__main__":
    main()