Text Generation
Safetensors
English
qwen2
conversational
Fino1-14B / README.md
lfqian's picture
Create README.md
3204adb verified
---
license: apache-2.0
datasets:
- TheFinAI/Fino1_Reasoning_Path_FinQA_v2
language:
- en
base_model:
- Qwen/Qwen2.5-14B-Instruct
pipeline_tag: text-generation
---
# 🦙 Fino1-14B
**Fino1-14B** is a fine-tuned version of **Qwen2.5-14B-Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA_v2**, enhancing its capabilities in **financial reasoning tasks**.
Check our paper arxiv.org/abs/2502.08127 for more details.
## 📌 Model Details
- **Model Name**: `Fino1-14B`
- **Base Model**: `Qwen2.5-14B-Instruct`
- **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA_v2` Derived from multiple financial dataset.
- **Training Method**: SFT and RF
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
- **Tokenizer**: Inherited from `Qwen/Qwen2.5-14B-Instruct`
## 📊 Training Configuration
- **Training Hardware**: `GPU: [e.g., 4xH100]`
- **Batch Size**: `[e.g., 16]`
- **Learning Rate**: `[e.g., 2e-5]`
- **Epochs**: `[e.g., 3]`
- **Optimizer**: `[e.g., AdamW, LAMB]`
## 🔧 Usage
To use `Fino1-14B` with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "TheFinAI/Fino1-14B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "What is the results of 3-5?"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## 💡 Citation
If you use this model in your research, please cite:
```python
@article{qian2025fino1,
title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
journal={arXiv preprint arXiv:2502.08127},
year={2025}
}