Conan-embedding-v1 / README.md
Vurkty's picture
First commit
c292072
|
raw
history blame
27 kB
metadata
tags:
  - mteb
model-index:
  - name: conan-embedding
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 57.32391831434286
          - type: cos_sim_spearman
            value: 60.95420518306528
          - type: euclidean_pearson
            value: 58.73713689471779
          - type: euclidean_spearman
            value: 60.05871977323687
          - type: manhattan_pearson
            value: 58.71439394187201
          - type: manhattan_spearman
            value: 60.03726849511567
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 57.416459629680325
          - type: cos_sim_spearman
            value: 58.78935983944373
          - type: euclidean_pearson
            value: 62.569916488206054
          - type: euclidean_spearman
            value: 58.32089170859326
          - type: manhattan_pearson
            value: 62.552144365725816
          - type: manhattan_spearman
            value: 58.31304102953674
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.364
          - type: f1
            value: 47.373487235615706
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 73.16013393385914
          - type: cos_sim_spearman
            value: 74.79454418123198
          - type: euclidean_pearson
            value: 72.91991570850215
          - type: euclidean_spearman
            value: 74.40420227973465
          - type: manhattan_pearson
            value: 72.91482392990748
          - type: manhattan_spearman
            value: 74.40097720245406
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 59.86170547809245
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 50.38135526839833
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 90.92142640302838
          - type: mrr
            value: 92.76190476190476
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 90.0539331525924
          - type: mrr
            value: 92.00964285714285
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.480999999999998
          - type: map_at_10
            value: 40.129
          - type: map_at_100
            value: 42.025
          - type: map_at_1000
            value: 42.123
          - type: map_at_3
            value: 35.644
          - type: map_at_5
            value: 38.187
          - type: mrr_at_1
            value: 40.01
          - type: mrr_at_10
            value: 48.886
          - type: mrr_at_100
            value: 49.825
          - type: mrr_at_1000
            value: 49.864000000000004
          - type: mrr_at_3
            value: 46.178000000000004
          - type: mrr_at_5
            value: 47.711999999999996
          - type: ndcg_at_1
            value: 40.01
          - type: ndcg_at_10
            value: 47.032000000000004
          - type: ndcg_at_100
            value: 54.135
          - type: ndcg_at_1000
            value: 55.821
          - type: ndcg_at_3
            value: 41.377
          - type: ndcg_at_5
            value: 43.808
          - type: precision_at_1
            value: 40.01
          - type: precision_at_10
            value: 10.495000000000001
          - type: precision_at_100
            value: 1.628
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.648
          - type: precision_at_5
            value: 17.224
          - type: recall_at_1
            value: 26.480999999999998
          - type: recall_at_10
            value: 58.557
          - type: recall_at_100
            value: 87.52799999999999
          - type: recall_at_1000
            value: 98.80600000000001
          - type: recall_at_3
            value: 41.628
          - type: recall_at_5
            value: 49.013
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.5423932651834
          - type: cos_sim_ap
            value: 92.8551948361576
          - type: cos_sim_f1
            value: 87.07992733878292
          - type: cos_sim_precision
            value: 84.6391525049658
          - type: cos_sim_recall
            value: 89.66565349544074
          - type: dot_accuracy
            value: 77.05351773902585
          - type: dot_ap
            value: 85.41568844524294
          - type: dot_f1
            value: 79.17229905375896
          - type: dot_precision
            value: 71.29213483146067
          - type: dot_recall
            value: 89.01098901098901
          - type: euclidean_accuracy
            value: 84.49789536981359
          - type: euclidean_ap
            value: 91.54179322199462
          - type: euclidean_f1
            value: 85.58362369337979
          - type: euclidean_precision
            value: 80.08966782147951
          - type: euclidean_recall
            value: 91.88683656768764
          - type: manhattan_accuracy
            value: 84.41371016235718
          - type: manhattan_ap
            value: 91.5209564727476
          - type: manhattan_f1
            value: 85.5386606276286
          - type: manhattan_precision
            value: 79.38350680544436
          - type: manhattan_recall
            value: 92.72854804769698
          - type: max_accuracy
            value: 86.5423932651834
          - type: max_ap
            value: 92.8551948361576
          - type: max_f1
            value: 87.07992733878292
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 82.824
          - type: map_at_10
            value: 89.749
          - type: map_at_100
            value: 89.79899999999999
          - type: map_at_1000
            value: 89.8
          - type: map_at_3
            value: 89.18599999999999
          - type: map_at_5
            value: 89.586
          - type: mrr_at_1
            value: 83.035
          - type: mrr_at_10
            value: 89.699
          - type: mrr_at_100
            value: 89.749
          - type: mrr_at_1000
            value: 89.749
          - type: mrr_at_3
            value: 89.18199999999999
          - type: mrr_at_5
            value: 89.582
          - type: ndcg_at_1
            value: 83.14
          - type: ndcg_at_10
            value: 92.059
          - type: ndcg_at_100
            value: 92.292
          - type: ndcg_at_1000
            value: 92.304
          - type: ndcg_at_3
            value: 91.033
          - type: ndcg_at_5
            value: 91.716
          - type: precision_at_1
            value: 83.14
          - type: precision_at_10
            value: 9.989
          - type: precision_at_100
            value: 1.009
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 32.35
          - type: precision_at_5
            value: 19.747
          - type: recall_at_1
            value: 82.824
          - type: recall_at_10
            value: 98.84100000000001
          - type: recall_at_100
            value: 99.895
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 96.207
          - type: recall_at_5
            value: 97.84
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.839000000000002
          - type: map_at_10
            value: 81.363
          - type: map_at_100
            value: 84.265
          - type: map_at_1000
            value: 84.29299999999999
          - type: map_at_3
            value: 56.593
          - type: map_at_5
            value: 71.057
          - type: mrr_at_1
            value: 91.14999999999999
          - type: mrr_at_10
            value: 94.00800000000001
          - type: mrr_at_100
            value: 94.059
          - type: mrr_at_1000
            value: 94.06
          - type: mrr_at_3
            value: 93.692
          - type: mrr_at_5
            value: 93.874
          - type: ndcg_at_1
            value: 91.14999999999999
          - type: ndcg_at_10
            value: 88.584
          - type: ndcg_at_100
            value: 91.186
          - type: ndcg_at_1000
            value: 91.437
          - type: ndcg_at_3
            value: 87.287
          - type: ndcg_at_5
            value: 86.058
          - type: precision_at_1
            value: 91.14999999999999
          - type: precision_at_10
            value: 42.199999999999996
          - type: precision_at_100
            value: 4.845
          - type: precision_at_1000
            value: 0.49
          - type: precision_at_3
            value: 78.05
          - type: precision_at_5
            value: 65.53
          - type: recall_at_1
            value: 26.839000000000002
          - type: recall_at_10
            value: 89.91900000000001
          - type: recall_at_100
            value: 98.18900000000001
          - type: recall_at_1000
            value: 99.503
          - type: recall_at_3
            value: 58.622
          - type: recall_at_5
            value: 75.44
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 55.300000000000004
          - type: map_at_10
            value: 65.53
          - type: map_at_100
            value: 66.084
          - type: map_at_1000
            value: 66.09
          - type: map_at_3
            value: 62.9
          - type: map_at_5
            value: 64.45
          - type: mrr_at_1
            value: 55.300000000000004
          - type: mrr_at_10
            value: 65.53
          - type: mrr_at_100
            value: 66.084
          - type: mrr_at_1000
            value: 66.09
          - type: mrr_at_3
            value: 62.9
          - type: mrr_at_5
            value: 64.45
          - type: ndcg_at_1
            value: 55.300000000000004
          - type: ndcg_at_10
            value: 70.743
          - type: ndcg_at_100
            value: 73.202
          - type: ndcg_at_1000
            value: 73.379
          - type: ndcg_at_3
            value: 65.366
          - type: ndcg_at_5
            value: 68.142
          - type: precision_at_1
            value: 55.300000000000004
          - type: precision_at_10
            value: 8.72
          - type: precision_at_100
            value: 0.9820000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 24.166999999999998
          - type: precision_at_5
            value: 15.840000000000002
          - type: recall_at_1
            value: 55.300000000000004
          - type: recall_at_10
            value: 87.2
          - type: recall_at_100
            value: 98.2
          - type: recall_at_1000
            value: 99.6
          - type: recall_at_3
            value: 72.5
          - type: recall_at_5
            value: 79.2
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.82762601000385
          - type: f1
            value: 39.89843169307487
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.13696060037525
          - type: ap
            value: 60.815127909851284
          - type: f1
            value: 84.4053710993565
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 74.49480212942174
          - type: cos_sim_spearman
            value: 79.79417204577828
          - type: euclidean_pearson
            value: 79.53588770578706
          - type: euclidean_spearman
            value: 79.44601707954529
          - type: manhattan_pearson
            value: 79.52732262295254
          - type: manhattan_spearman
            value: 79.43565470474867
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 41.45350792019148
          - type: mrr
            value: 41.2468253968254
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 68.327
          - type: map_at_10
            value: 78.244
          - type: map_at_100
            value: 78.493
          - type: map_at_1000
            value: 78.498
          - type: map_at_3
            value: 76.305
          - type: map_at_5
            value: 77.549
          - type: mrr_at_1
            value: 70.63000000000001
          - type: mrr_at_10
            value: 78.78399999999999
          - type: mrr_at_100
            value: 79.001
          - type: mrr_at_1000
            value: 79.00500000000001
          - type: mrr_at_3
            value: 77.11099999999999
          - type: mrr_at_5
            value: 78.175
          - type: ndcg_at_1
            value: 70.63000000000001
          - type: ndcg_at_10
            value: 82.221
          - type: ndcg_at_100
            value: 83.281
          - type: ndcg_at_1000
            value: 83.403
          - type: ndcg_at_3
            value: 78.56400000000001
          - type: ndcg_at_5
            value: 80.65299999999999
          - type: precision_at_1
            value: 70.63000000000001
          - type: precision_at_10
            value: 9.983
          - type: precision_at_100
            value: 1.05
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.69
          - type: precision_at_5
            value: 18.931
          - type: recall_at_1
            value: 68.327
          - type: recall_at_10
            value: 93.91000000000001
          - type: recall_at_100
            value: 98.56
          - type: recall_at_1000
            value: 99.508
          - type: recall_at_3
            value: 84.262
          - type: recall_at_5
            value: 89.21
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 78.34566240753193
          - type: f1
            value: 74.84529699027114
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 86.35171486213852
          - type: f1
            value: 85.47178380961844
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 57.199999999999996
          - type: map_at_10
            value: 65.075
          - type: map_at_100
            value: 65.607
          - type: map_at_1000
            value: 65.63
          - type: map_at_3
            value: 63
          - type: map_at_5
            value: 64.145
          - type: mrr_at_1
            value: 57.099999999999994
          - type: mrr_at_10
            value: 65.024
          - type: mrr_at_100
            value: 65.556
          - type: mrr_at_1000
            value: 65.579
          - type: mrr_at_3
            value: 62.949999999999996
          - type: mrr_at_5
            value: 64.095
          - type: ndcg_at_1
            value: 57.199999999999996
          - type: ndcg_at_10
            value: 69.083
          - type: ndcg_at_100
            value: 71.844
          - type: ndcg_at_1000
            value: 72.41499999999999
          - type: ndcg_at_3
            value: 64.781
          - type: ndcg_at_5
            value: 66.842
          - type: precision_at_1
            value: 57.199999999999996
          - type: precision_at_10
            value: 8.18
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 23.3
          - type: precision_at_5
            value: 14.979999999999999
          - type: recall_at_1
            value: 57.199999999999996
          - type: recall_at_10
            value: 81.8
          - type: recall_at_100
            value: 95.1
          - type: recall_at_1000
            value: 99.5
          - type: recall_at_3
            value: 69.89999999999999
          - type: recall_at_5
            value: 74.9
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 79.10000000000001
          - type: f1
            value: 78.84641270838914
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 85.76069301570114
          - type: cos_sim_ap
            value: 91.2632425363724
          - type: cos_sim_f1
            value: 86.8038133467135
          - type: cos_sim_precision
            value: 82.69598470363289
          - type: cos_sim_recall
            value: 91.34107708553326
          - type: dot_accuracy
            value: 79.48023822414727
          - type: dot_ap
            value: 86.96279505479045
          - type: dot_f1
            value: 81.3658536585366
          - type: dot_precision
            value: 75.61196736174071
          - type: dot_recall
            value: 88.0675818373812
          - type: euclidean_accuracy
            value: 84.0281537628587
          - type: euclidean_ap
            value: 88.51741173181273
          - type: euclidean_f1
            value: 85.51791850760924
          - type: euclidean_precision
            value: 79.90825688073394
          - type: euclidean_recall
            value: 91.97465681098205
          - type: manhattan_accuracy
            value: 84.08229561451002
          - type: manhattan_ap
            value: 88.47110130415778
          - type: manhattan_f1
            value: 85.5886663409868
          - type: manhattan_precision
            value: 79.63636363636364
          - type: manhattan_recall
            value: 92.5026399155227
          - type: max_accuracy
            value: 85.76069301570114
          - type: max_ap
            value: 91.2632425363724
          - type: max_f1
            value: 86.8038133467135
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 95.24999999999999
          - type: ap
            value: 93.62998298041074
          - type: f1
            value: 95.24017532648074
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.4435049928267
          - type: cos_sim_spearman
            value: 48.30517824065838
          - type: euclidean_pearson
            value: 47.06361699313179
          - type: euclidean_spearman
            value: 47.82186765650415
          - type: manhattan_pearson
            value: 47.07696683801967
          - type: manhattan_spearman
            value: 47.8382411727149
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 42.98576550573372
          - type: cos_sim_spearman
            value: 45.186068114717166
          - type: euclidean_pearson
            value: 34.35887865584346
          - type: euclidean_spearman
            value: 40.16452917420738
          - type: manhattan_pearson
            value: 34.32064302728564
          - type: manhattan_spearman
            value: 40.14426009784696
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.18376994296008
          - type: cos_sim_spearman
            value: 68.25525695381309
          - type: euclidean_pearson
            value: 65.10112612702181
          - type: euclidean_spearman
            value: 67.3953850420758
          - type: manhattan_pearson
            value: 64.96220731298227
          - type: manhattan_spearman
            value: 67.35995395052407
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 80.23573559451846
          - type: cos_sim_spearman
            value: 81.88824265805962
          - type: euclidean_pearson
            value: 80.25198665320175
          - type: euclidean_spearman
            value: 80.78767800619003
          - type: manhattan_pearson
            value: 80.25183889871069
          - type: manhattan_spearman
            value: 80.77487518316391
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 69.0943636065547
          - type: mrr
            value: 79.81629026017988
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.338
          - type: map_at_10
            value: 76.943
          - type: map_at_100
            value: 80.632
          - type: map_at_1000
            value: 80.695
          - type: map_at_3
            value: 53.946000000000005
          - type: map_at_5
            value: 66.399
          - type: mrr_at_1
            value: 89.47
          - type: mrr_at_10
            value: 92.31200000000001
          - type: mrr_at_100
            value: 92.406
          - type: mrr_at_1000
            value: 92.40899999999999
          - type: mrr_at_3
            value: 91.89
          - type: mrr_at_5
            value: 92.167
          - type: ndcg_at_1
            value: 89.47
          - type: ndcg_at_10
            value: 84.629
          - type: ndcg_at_100
            value: 88.278
          - type: ndcg_at_1000
            value: 88.871
          - type: ndcg_at_3
            value: 85.80600000000001
          - type: ndcg_at_5
            value: 84.531
          - type: precision_at_1
            value: 89.47
          - type: precision_at_10
            value: 42.077999999999996
          - type: precision_at_100
            value: 5.023
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.016
          - type: precision_at_5
            value: 62.980000000000004
          - type: recall_at_1
            value: 27.338
          - type: recall_at_10
            value: 83.889
          - type: recall_at_100
            value: 95.674
          - type: recall_at_1000
            value: 98.65
          - type: recall_at_3
            value: 55.85099999999999
          - type: recall_at_5
            value: 70.131
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 54.70900000000001
          - type: f1
            value: 52.74258250140307
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 77.01405081546925
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 71.50626450459885
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 64.1
          - type: map_at_10
            value: 75.047
          - type: map_at_100
            value: 75.347
          - type: map_at_1000
            value: 75.348
          - type: map_at_3
            value: 73.333
          - type: map_at_5
            value: 74.313
          - type: mrr_at_1
            value: 64.1
          - type: mrr_at_10
            value: 75.047
          - type: mrr_at_100
            value: 75.347
          - type: mrr_at_1000
            value: 75.348
          - type: mrr_at_3
            value: 73.333
          - type: mrr_at_5
            value: 74.313
          - type: ndcg_at_1
            value: 64.1
          - type: ndcg_at_10
            value: 79.814
          - type: ndcg_at_100
            value: 81.071
          - type: ndcg_at_1000
            value: 81.085
          - type: ndcg_at_3
            value: 76.307
          - type: ndcg_at_5
            value: 78.054
          - type: precision_at_1
            value: 64.1
          - type: precision_at_10
            value: 9.45
          - type: precision_at_100
            value: 0.9990000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.299999999999997
          - type: precision_at_5
            value: 17.82
          - type: recall_at_1
            value: 64.1
          - type: recall_at_10
            value: 94.5
          - type: recall_at_100
            value: 99.9
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 84.89999999999999
          - type: recall_at_5
            value: 89.1
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.61
          - type: ap
            value: 75.72595764105405
          - type: f1
            value: 88.23268907984898
license: cc-by-nc-4.0

Conan-embedding-v1

Performance

Model Average CLS Clustering Reranking Retrieval STS Pair_CLS
gte-Qwen2-7B-instruct 72.05 75.09 66.06 68.92 76.03 65.33 87.48
xiaobu-embedding-v2 72.43 74.67 65.17 72.58 76.5 64.53 91.87
Conan-embedding-v1 72.61 74.97 64.69 72.88 76.77 64.75 92.06

More details will be available soon.


About

Created by the Tencent BAC Group. All rights reserved.

License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.