Direct Use
#Load model
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-32B")
model3 = PeftModel.from_pretrained(base_model, "TMAE-Triage/MedConsultLLM")
tokenizer3 = AutoTokenizer.from_pretrained("TMAE-Triage/MedConsultLLM")
inputs3 = tokenizer3("<|im_start|>system\n<|im_end|>\n<|im_start|>user\nNKDA \n\n Patient SOB & RNA.<|im_end|><|im_start|>assistant\n", return_tensors="pt")
outputs3 = model3.generate(input_ids=inputs3.input_ids, max_new_tokens=100)
print(tokenizer3.decode(outputs3[0], skip_special_tokens=True))
#Result:
<|im_start|>system
<|im_end|>
<|im_start|>user
NKDA
Patient SOB & RNA.<|im_end|><|im_start|>assistant
no known drug allergies.
Patient shortness of breath and ribonucleic acid<|im_end|>.
Metrics
Training Detail
Framework versions
- PEFT 0.15.2
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TMAE-Triage/MedConsultLLM
Base model
Qwen/Qwen3-32B