SmolVLM2-500M-Video-Instruct-vqav2
This model is a fine-tuned version of HuggingFaceTB/SmolVLM2-500M-Video-Instruct on the jinaai/table-vqa dataset.
Model description
This model is a SmolVLM2-500M-Video-Instruct model fine-tuned for Visual Question Answering on table images using the jinaai/table-vqa dataset. It was fine-tuned using QLoRA for efficient training on consumer GPUs.
Intended uses & limitations
This model is intended for Visual Question Answering tasks specifically on images containing tables. It can be used to answer questions about the content of tables within images.
Limitations:
- Performance may vary on different types of images or questions outside of the table VQA domain.
- The model was fine-tuned on a small subset of the dataset for demonstration purposes.
- The model's performance is dependent on the quality and nature of the jinaai/table-vqa dataset.
Training and evaluation data
The model was trained on a subset of the jinaai/table-vqa dataset. The training dataset size is 800 examples, and the test dataset size is 200 examples.
Training procedure
The model was fine-tuned using the QLoRA method with the following configuration:
r=8
lora_alpha=8
lora_dropout=0.1
target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj']
use_dora=False
init_lora_weights="gaussian"
- 4-bit quantization (
bnb_4bit_use_double_quant=True
,bnb_4bit_quant_type="nf4"
,bnb_4bit_compute_dtype=torch.bfloat16
)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
Direct Use
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, BitsAndBytesConfig
from PIL import Image
import requests
# Define the base model and the fine-tuned adapter repository
base_model_id = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
adapter_model_id = "Susant-Achary/SmolVLM2-500M-Video-Instruct-vqav2"
# Load the processor from the base model
processor = AutoProcessor.from_pretrained(base_model_id)
# Load the base model with quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = Idefics3ForConditionalGeneration.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto"
)
# Load the adapter and add it to the base model
model = PeftModel.from_pretrained(model, adapter_model_id)
# Prepare an example image and question
# You can replace this with your own image and question
url = "/content/VQA-20-standard-test-set-results-comparison-of-state-of-the-art-methods.png"
image = Image.open(url)
question = "What is in the image?"
# Prepare the input for the model
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Answer briefly."},
{"type": "image"},
{"type": "text", "text": question}
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": None}
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=False)
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device) # Move inputs to model device
# Generate a response
generated_ids = model.generate(**inputs, max_new_tokens=100)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Print the generated response
print(generated_text)
Framework versions
- PEFT 0.16.0
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- bitsandbytes 0.46.1
- num2words
- Downloads last month
- 6
Model tree for Susant-Achary/SmolVLM2-500M-Video-Instruct-vqav2
Base model
HuggingFaceTB/SmolLM2-360M