|
--- |
|
pipeline_tag: any-to-any |
|
library_name: transformers |
|
tags: |
|
- text-to-image |
|
- image-editing |
|
- image-understanding |
|
- vision-language |
|
- multimodal |
|
- autoregressive |
|
- unified-model |
|
license: mit |
|
--- |
|
|
|
## 🌌 UniPic2-SD3.5M-Kontext-2B |
|
|
|
<div align="center"> |
|
<img src="skywork-logo.png" alt="Skywork Logo" width="500"> |
|
</div> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/SkyworkAI/UniPic"> |
|
<img src="https://img.shields.io/badge/GitHub-UniPic-blue?logo=github" alt="GitHub Repo"> |
|
</a> |
|
<a href="https://github.com/SkyworkAI/UniPic/stargazers"> |
|
<img src="https://img.shields.io/github/stars/SkyworkAI/UniPic?style=social" alt="GitHub Stars"> |
|
</a> |
|
<a href="https://github.com/SkyworkAI/UniPic/network/members"> |
|
<img src="https://img.shields.io/github/forks/SkyworkAI/UniPic?style=social" alt="GitHub Forks"> |
|
</a> |
|
</p> |
|
|
|
|
|
|
|
## 📖 Introduction |
|
|
|
**UniPic2-SD3.5M-Kontext-2B** is a post-trained **T2I |
|
** model built on the SD3.5-Medium. It focuses on text-to-image generation and image editing, delivering strong quality with a fast generation speed. It runs smoothly on a single 16 GB consumer GPU. |
|
|
|
<div align="center"> <img src="teaser.png" alt="Model Teaser" width="720"> </div> |
|
|
|
## 📊 Benchmarks |
|
|
|
**UniPic2-SD3.5M-Kontext-2B** w/o GRPO achieves competitive results across a variety of vision-language tasks: |
|
|
|
| Task | Score | |
|
|--------------------|--------| |
|
| 🧠 **GenEval** | 0.83 | |
|
| 🖼️ **DPG-Bench** | 83.7 | |
|
| ✂️ **GEditBench-EN** | 6.31 | |
|
| 🧪 **ImgEdit-Bench** | 3.95 | |
|
|
|
|
|
|
|
## 🧠 Usage |
|
|
|
### 1. Clone the Repository |
|
|
|
```bash |
|
git clone https://github.com/SkyworkAI/UniPic |
|
cd UniPic-2 |
|
``` |
|
|
|
### 2. Set Up the Environment |
|
```bash |
|
conda create -n unipic python=3.10 |
|
conda activate unipic |
|
pip install -r requirements.txt |
|
``` |
|
|
|
|
|
### 3.Text-to-Image Generation |
|
```bash |
|
import torch |
|
from PIL import Image |
|
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline |
|
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel |
|
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast |
|
|
|
# Load model components |
|
pretrained_model_name_or_path = "Skywork/UniPic2-SD3.5M-Kontext-2B" |
|
|
|
transformer = SD3Transformer2DKontextModel.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16).cuda() |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="vae", |
|
torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True |
|
).cuda() |
|
|
|
# Load text encoders |
|
text_encoder = CLIPTextModelWithProjection.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True |
|
).cuda() |
|
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True |
|
).cuda() |
|
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2") |
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="text_encoder_3", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True |
|
).cuda() |
|
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3") |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="scheduler" |
|
) |
|
|
|
# Create pipeline |
|
pipeline = StableDiffusion3KontextPipeline( |
|
transformer=transformer, vae=vae, |
|
text_encoder=text_encoder, tokenizer=tokenizer, |
|
text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, |
|
text_encoder_3=text_encoder_3, tokenizer_3=tokenizer_3, |
|
scheduler=scheduler) |
|
|
|
# Generate image |
|
image = pipeline( |
|
prompt='a pig with wings and a top hat flying over a happy futuristic scifi city', |
|
negative_prompt='blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas.', |
|
height=512, width=384, |
|
num_inference_steps=50, |
|
guidance_scale=3.5, |
|
generator=torch.Generator(device=transformer.device).manual_seed(42) |
|
).images[0] |
|
|
|
image.save("text2image.png") |
|
|
|
``` |
|
|
|
|
|
### 4. Image Editing |
|
```bash |
|
# Load and preprocess image |
|
def fix_longer_edge(x, image_size, factor=32): |
|
w, h = x.size |
|
if w >= h: |
|
target_w = image_size |
|
target_h = h * (target_w / w) |
|
target_h = round(target_h / factor) * factor |
|
else: |
|
target_h = image_size |
|
target_w = w * (target_h / h) |
|
target_w = round(target_w / factor) * factor |
|
x = x.resize(size=(target_w, target_h)) |
|
return x |
|
|
|
image = Image.open("text2image.png") |
|
image = fix_longer_edge(image, image_size=512) |
|
|
|
negative_prompt = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas." |
|
|
|
# Edit image |
|
edited_image = pipeline( |
|
image=image, |
|
prompt="remove the pig's hat", |
|
negative_prompt=negative_prompt, |
|
height=image.height, width=image.width, |
|
num_inference_steps=50, |
|
guidance_scale=3.5, |
|
generator=torch.Generator(device=transformer.device).manual_seed(42) |
|
).images[0] |
|
|
|
edited_image.save("edited_img.png") |
|
|
|
``` |
|
|
|
## 📄 License |
|
|
|
This model is released under the MIT License. |
|
|
|
## Citation |
|
If you use Skywork-UniPic in your research, please cite: |
|
``` |
|
@misc{wang2025skyworkunipicunifiedautoregressive, |
|
title={Skywork UniPic: Unified Autoregressive Modeling for Visual Understanding and Generation}, |
|
author={Peiyu Wang and Yi Peng and Yimeng Gan and Liang Hu and Tianyidan Xie and Xiaokun Wang and Yichen Wei and Chuanxin Tang and Bo Zhu and Changshi Li and Hongyang Wei and Eric Li and Xuchen Song and Yang Liu and Yahui Zhou}, |
|
year={2025}, |
|
eprint={2508.03320}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2508.03320}, |
|
} |
|
``` |