DermaAI - Skin Disease Classification Model

A deep learning model for classifying skin diseases using computer vision. This model can identify 5 different skin conditions with confidence scores and medical recommendations.

🏥 Supported Skin Conditions

The model can classify the following skin diseases:

  1. Atopic Dermatitis - A chronic inflammatory skin condition
  2. Eczema - Inflammatory skin condition causing red, itchy patches
  3. Psoriasis - Autoimmune condition causing scaly skin patches
  4. Seborrheic Keratoses - Common benign skin growths
  5. Tinea Ringworm Candidiasis - Fungal skin infections

🔧 Model Details

  • Model Type: Keras/TensorFlow model based on EfficientNetV2
  • Task: Image Classification (Multi-class)
  • Domain: Medical/Dermatology
  • Framework: TensorFlow/Keras
  • Input Size: 224x224x3 (RGB images)
  • Output: 5-class probability distribution
  • Preprocessing: EfficientNetV2 preprocessing

🚀 Quick Start

Basic Usage

import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input

# Download and load the model
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema', 
    'Psoriasis',
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

# Prediction function
def predict_skin_condition(image_path):
    # Load and preprocess image
    image = Image.open(image_path).convert('RGB')
    image = image.resize((224, 224))
    image_array = np.array(image)
    image_array = preprocess_input(image_array)
    image_array = np.expand_dims(image_array, axis=0)
    
    # Make prediction
    predictions = model.predict(image_array)
    predicted_class_index = np.argmax(predictions[0])
    predicted_class = class_names[predicted_class_index]
    confidence = predictions[0][predicted_class_index] * 100
    
    return predicted_class, confidence

# Example usage
prediction, confidence = predict_skin_condition("path/to/your/image.jpg")
print(f"Prediction: {prediction} ({confidence:.2f}% confidence)")

🌐 Flask API Usage

Create a complete web API for skin disease classification:

1. Install Dependencies

pip install flask numpy tensorflow pillow flask-cors huggingface-hub

2. Create Flask Application (app.py)

from flask import Flask, request, jsonify
import numpy as np
import tensorflow as tf
import base64
import io
from PIL import Image
from flask_cors import CORS
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from huggingface_hub import hf_hub_download

app = Flask(__name__)
CORS(app)

# Download and load the model from Hugging Face
print("Downloading model from Hugging Face...")
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)
print("✅ Model loaded successfully!")

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema',
    'Psoriasis', 
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

@app.route('/predict', methods=['POST'])
def predict():
    try:
        data = request.json
        if not data or 'image' not in data:
            return jsonify({'error': 'No image data provided'}), 400
        
        # Process base64 image
        image_data = data['image']
        if 'base64,' in image_data:
            image_data = image_data.split('base64,')[1]
        
        # Decode and preprocess image
        decoded_image = base64.b64decode(image_data)
        image = Image.open(io.BytesIO(decoded_image)).convert('RGB')
        image = image.resize((224, 224))
        image_array = np.array(image)
        image_array = preprocess_input(image_array)
        image_array = np.expand_dims(image_array, axis=0)

        # Make prediction
        predictions = model.predict(image_array)
        predicted_class_index = int(np.argmax(predictions[0]))
        predicted_class = class_names[predicted_class_index]
        confidence = float(predictions[0][predicted_class_index] * 100)

        # Get top alternatives
        top_indices = np.argsort(predictions[0])[-3:][::-1]
        top_predictions = [
            {
                'class': class_names[i],
                'confidence': float(predictions[0][i] * 100)
            }
            for i in top_indices if i != predicted_class_index
        ]

        # Generate medical recommendation
        if confidence < 10:
            recommendation = "Very low confidence. Please retake image with better lighting and focus."
        elif confidence < 30:
            recommendation = "Low confidence. Preliminary result only. Consult a dermatologist."
        elif confidence < 60:
            recommendation = "Moderate confidence. Consider alternatives and consult healthcare professional."
        else:
            recommendation = "High confidence prediction. Always consult healthcare professional for confirmation."

        return jsonify({
            'prediction': predicted_class,
            'confidence': round(confidence, 2),
            'all_confidences': {
                class_names[i]: float(pred * 100) for i, pred in enumerate(predictions[0])
            },
            'top_alternatives': top_predictions,
            'recommendation': recommendation
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/health', methods=['GET'])
def health():
    return jsonify({'status': 'healthy', 'model_loaded': True})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5001, debug=True)

3. Run the API

python app.py

The API will be available at http://localhost:5001

4. API Usage Examples

Python Client:

import requests
import base64

def predict_image(image_path, api_url="http://localhost:5001/predict"):
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
    
    data = {"image": f"data:image/jpeg;base64,{encoded_string}"}
    response = requests.post(api_url, json=data)
    return response.json()

# Usage
result = predict_image("skin_image.jpg")
print(f"Prediction: {result['prediction']} ({result['confidence']}%)")

JavaScript Client:

async function predictSkinCondition(imageFile) {
    const base64 = await new Promise((resolve) => {
        const reader = new FileReader();
        reader.onload = () => resolve(reader.result);
        reader.readAsDataURL(imageFile);
    });
    
    const response = await fetch('http://localhost:5001/predict', {
        method: 'POST',
        headers: {'Content-Type': 'application/json'},
        body: JSON.stringify({image: base64})
    });
    
    return await response.json();
}

cURL:

curl -X POST http://localhost:5001/predict \
  -H "Content-Type: application/json" \
  -d '{"image": "_BASE64_IMAGE_HERE"}'

📋 API Response Format

{
    "prediction": "Eczema",
    "confidence": 85.23,
    "all_confidences": {
        "Atopic Dermatitis": 12.45,
        "Eczema": 85.23,
        "Psoriasis": 1.32,
        "Seborrheic Keratoses": 0.67,
        "Tinea Ringworm Candidiasis": 0.33
    },
    "top_alternatives": [
        {
            "class": "Atopic Dermatitis",
            "confidence": 12.45
        }
    ],
    "recommendation": "High confidence prediction. Always consult healthcare professional for confirmation."
}

🖼️ Image Requirements

  • Formats: JPG, PNG, WebP, and other common formats
  • Size: Automatically resized to 224x224 pixels
  • Quality: High-resolution images with good lighting work best
  • Focus: Ensure affected skin area is clearly visible

🐳 Docker Deployment

Dockerfile:

FROM python:3.9-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py .
EXPOSE 5001
CMD ["python", "app.py"]

Requirements.txt:

flask>=2.0.0
numpy>=1.21.0
tensorflow>=2.13.0
pillow>=9.0.0
flask-cors>=3.0.0
huggingface-hub>=0.20.0

Build and Run:

docker build -t dermaai-api .
docker run -p 5001:5001 dermaai-api

⚕️ Important Medical Disclaimer

This model is for educational and research purposes only. It should NOT be used as a substitute for professional medical diagnosis or treatment. Always consult qualified healthcare professionals for proper medical evaluation and treatment of skin conditions.

📊 Performance Notes

  • Input: 224x224 RGB images
  • Preprocessing: EfficientNetV2 normalization
  • Architecture: Based on EfficientNetV2
  • Classes: 5 skin disease categories
  • Confidence Levels:
    • Low: < 30% (requires professional consultation)
    • Moderate: 30-60% (consider alternatives)
    • High: > 60% (still requires medical confirmation)

🤝 Citation

If you use this model in your research or applications, please cite appropriately:

@misc{dermaai2024,
  title={DermaAI: Deep Learning Model for Skin Disease Classification},
  author={Siraja704},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/Siraja704/DermaAI}
}

📝 License

Licensed under the Apache 2.0 License. See the LICENSE file for details.

🔗 Links

Downloads last month
31
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Space using Siraja704/DermaAI 1