|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import joblib |
|
from apify_client import ApifyClient |
|
model = joblib.load("classifier.pkl") |
|
client = ApifyClient("your api key from apify") |
|
st.title("Fake Instagram Profile Detection") |
|
st.write("Plaese provide instagram account details you would like to predict") |
|
n = st.text_input("Enter username ") |
|
run_input = { "usernames": [n] } |
|
run = client.actor("dSCLg0C3YEZ83HzYX").call(run_input=run_input) |
|
m = client.dataset(run["defaultDatasetId"]) |
|
for item in m.iterate_items(): |
|
postsCount= item.get('postsCount') |
|
followersCount = item.get('followersCount') |
|
followsCount = item.get('followsCount') |
|
private=item.get('private') |
|
verified=item.get('verified') |
|
|
|
def predictor(postsCount,followersCount,followsCount,private,verified): |
|
prediction = model.predict([[postsCount,followersCount,followsCount,private,verified]]) |
|
print(prediction) |
|
return prediction |
|
|
|
|
|
if st.button("Predict"): |
|
result = predictor(postsCount,followersCount,followsCount,private,verified) |
|
st.write("The number of posts : " , postsCount) |
|
st.write("The number of followers : " ,followersCount) |
|
st.write("The number of following : " ,followsCount) |
|
st.write("Private : " ,private) |
|
st.write("Verified : " ,verified) |
|
if postsCount == None: |
|
st.error("The User Doesn't exist") |
|
elif result == 0 and postsCount != None: |
|
st.error("The Account is Likely to be Fake ") |
|
else: |
|
st.success("The Account is Likely to be Real") |