Shashank2k3 commited on
Commit
c2ce559
·
verified ·
1 Parent(s): e369950

Update fpd1.py

Browse files
Files changed (1) hide show
  1. fpd1.py +38 -38
fpd1.py CHANGED
@@ -1,39 +1,39 @@
1
- import numpy as np
2
- import pandas as pd
3
- import streamlit as st
4
- import joblib
5
- from apify_client import ApifyClient
6
- model = joblib.load("classifier.pkl")
7
- client = ApifyClient("apify_api_nscRkHOyMh3mytIWftXpHpZlIzBhgF4mZyPV")
8
- st.title("Fake Instagram Profile Detection")
9
- st.write("Plaese provide instagram account details you would like to predict")
10
- n = st.text_input("Enter username ")
11
- run_input = { "usernames": [n] }
12
- run = client.actor("dSCLg0C3YEZ83HzYX").call(run_input=run_input)
13
- m = client.dataset(run["defaultDatasetId"])
14
- for item in m.iterate_items():
15
- postsCount= item.get('postsCount')
16
- followersCount = item.get('followersCount')
17
- followsCount = item.get('followsCount')
18
- private=item.get('private')
19
- verified=item.get('verified')
20
-
21
- def predictor(postsCount,followersCount,followsCount,private,verified):
22
- prediction = model.predict([[postsCount,followersCount,followsCount,private,verified]])
23
- print(prediction)
24
- return prediction
25
-
26
-
27
- if st.button("Predict"):
28
- result = predictor(postsCount,followersCount,followsCount,private,verified)
29
- st.write("The number of posts : " , postsCount)
30
- st.write("The number of followers : " ,followersCount)
31
- st.write("The number of following : " ,followsCount)
32
- st.write("Private : " ,private)
33
- st.write("Verified : " ,verified)
34
- if postsCount == None:
35
- st.error("The User Doesn't exist")
36
- elif result == 0 and postsCount != None:
37
- st.error("The Account is Likely to be Fake ")
38
- else:
39
  st.success("The Account is Likely to be Real")
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ import joblib
5
+ from apify_client import ApifyClient
6
+ model = joblib.load("classifier.pkl")
7
+ client = ApifyClient("your api key from apify")
8
+ st.title("Fake Instagram Profile Detection")
9
+ st.write("Plaese provide instagram account details you would like to predict")
10
+ n = st.text_input("Enter username ")
11
+ run_input = { "usernames": [n] }
12
+ run = client.actor("dSCLg0C3YEZ83HzYX").call(run_input=run_input)
13
+ m = client.dataset(run["defaultDatasetId"])
14
+ for item in m.iterate_items():
15
+ postsCount= item.get('postsCount')
16
+ followersCount = item.get('followersCount')
17
+ followsCount = item.get('followsCount')
18
+ private=item.get('private')
19
+ verified=item.get('verified')
20
+
21
+ def predictor(postsCount,followersCount,followsCount,private,verified):
22
+ prediction = model.predict([[postsCount,followersCount,followsCount,private,verified]])
23
+ print(prediction)
24
+ return prediction
25
+
26
+
27
+ if st.button("Predict"):
28
+ result = predictor(postsCount,followersCount,followsCount,private,verified)
29
+ st.write("The number of posts : " , postsCount)
30
+ st.write("The number of followers : " ,followersCount)
31
+ st.write("The number of following : " ,followsCount)
32
+ st.write("Private : " ,private)
33
+ st.write("Verified : " ,verified)
34
+ if postsCount == None:
35
+ st.error("The User Doesn't exist")
36
+ elif result == 0 and postsCount != None:
37
+ st.error("The Account is Likely to be Fake ")
38
+ else:
39
  st.success("The Account is Likely to be Real")