File size: 3,042 Bytes
8c7ef28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
title: YOLO Model
tags:
- yolo
- object-detection
- computer-vision
- unknown
- aegis-ai
library_name: ultralytics
license: agpl-3.0
---
# YOLO Model
This model has been converted and optimized using the **Aegis AI Model Conversion Tool**.
## Model Details
- **Original Model**: Unknown
- **Format**: UNKNOWN
- **Task**: Object Detection
- **Framework**: Ultralytics YOLO
- **License**: AGPL-3.0
## Performance Metrics
| Metric | Value |
|--------|--------|
| Average FPS | N/A |
| Inference Time | N/A ms |
| Memory Usage | N/A MB |
| Target Hardware | cpu |
## Hardware Information
- **Platform**: Unknown
- **Device**: cpu
- **Optimization**: Hardware-specific optimizations applied
## Usage
### Loading the Model
```python
# For ONNX models
import onnxruntime as ort
session = ort.InferenceSession("model.onnx")
# For PyTorch models
from ultralytics import YOLO
model = YOLO("model.pt")
# For TensorRT models (NVIDIA GPU)
# Requires TensorRT runtime
model = YOLO("model.engine")
```
### Inference
```python
import numpy as np
from PIL import Image
# Load your image
image = Image.open("path/to/image.jpg")
# Run inference
results = model(image)
# Process results
for result in results:
boxes = result.boxes # Bounding boxes
classes = result.names # Class names
```
## Conversion Details
This model was converted using the Aegis AI Model Conversion Tool with the following configuration:
- **Precision**: fp32
- **Optimization Level**: standard
- **Hardware Target**: cpu
- **Conversion Date**: 2025-08-18 15:11:05
## Model Architecture
Based on the YOLO (You Only Look Once) architecture, this model provides real-time object detection capabilities with optimized performance for the target hardware.
### Input
- **Shape**: 640x640
- **Format**: RGB images
- **Normalization**: [0-1] range
### Output
- **Bounding Boxes**: Object locations
- **Confidence Scores**: Detection confidence
- **Class Predictions**: Object categories
## Benchmarking
The model has been benchmarked on the target hardware with the following results:
```json
{}
```
## Hardware Compatibility
This model has been optimized for:
- **Primary**: cpu
- **Platform**: Unknown
For other hardware configurations, consider using the Aegis AI Model Conversion Tool to create optimized versions.
## Citation
If you use this model in your research or project, please cite:
```bibtex
@misc{aegis-ai-converted-model,
title={Aegis AI Converted YOLO Model},
author={Aegis AI Team},
year={2025},
howpublished={\url{https://github.com/aegis-ai/model-conversion-tool}}
}
```
## Related Models
- [Original YOLO Models](https://github.com/ultralytics/ultralytics)
- [Aegis AI Model Zoo](https://huggingface.co/aegis-ai)
## Support
For issues with this converted model or the conversion tool:
- [GitHub Issues](https://github.com/aegis-ai/model-conversion-tool/issues)
- [Aegis AI Documentation](https://docs.aegis-ai.com)
---
*This model was automatically converted and uploaded by the Aegis AI Model Conversion Tool.*
|