File size: 3,042 Bytes
8c7ef28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
title: YOLO Model
tags:
- yolo
- object-detection
- computer-vision
- unknown
- aegis-ai
library_name: ultralytics
license: agpl-3.0
---

# YOLO Model

This model has been converted and optimized using the **Aegis AI Model Conversion Tool**.

## Model Details

- **Original Model**: Unknown
- **Format**: UNKNOWN
- **Task**: Object Detection
- **Framework**: Ultralytics YOLO
- **License**: AGPL-3.0

## Performance Metrics

| Metric | Value |
|--------|--------|
| Average FPS | N/A |
| Inference Time | N/A ms |
| Memory Usage | N/A MB |
| Target Hardware | cpu |

## Hardware Information

- **Platform**: Unknown
- **Device**: cpu
- **Optimization**: Hardware-specific optimizations applied

## Usage

### Loading the Model

```python
# For ONNX models
import onnxruntime as ort
session = ort.InferenceSession("model.onnx")

# For PyTorch models
from ultralytics import YOLO
model = YOLO("model.pt")

# For TensorRT models (NVIDIA GPU)
# Requires TensorRT runtime
model = YOLO("model.engine")
```

### Inference

```python
import numpy as np
from PIL import Image

# Load your image
image = Image.open("path/to/image.jpg")

# Run inference
results = model(image)

# Process results
for result in results:
    boxes = result.boxes  # Bounding boxes
    classes = result.names  # Class names
```

## Conversion Details

This model was converted using the Aegis AI Model Conversion Tool with the following configuration:

- **Precision**: fp32
- **Optimization Level**: standard
- **Hardware Target**: cpu
- **Conversion Date**: 2025-08-18 15:11:05

## Model Architecture

Based on the YOLO (You Only Look Once) architecture, this model provides real-time object detection capabilities with optimized performance for the target hardware.

### Input

- **Shape**: 640x640
- **Format**: RGB images
- **Normalization**: [0-1] range

### Output

- **Bounding Boxes**: Object locations
- **Confidence Scores**: Detection confidence
- **Class Predictions**: Object categories

## Benchmarking

The model has been benchmarked on the target hardware with the following results:

```json
{}
```

## Hardware Compatibility

This model has been optimized for:
- **Primary**: cpu
- **Platform**: Unknown

For other hardware configurations, consider using the Aegis AI Model Conversion Tool to create optimized versions.

## Citation

If you use this model in your research or project, please cite:

```bibtex
@misc{aegis-ai-converted-model,
  title={Aegis AI Converted YOLO Model},
  author={Aegis AI Team},
  year={2025},
  howpublished={\url{https://github.com/aegis-ai/model-conversion-tool}}
}
```

## Related Models

- [Original YOLO Models](https://github.com/ultralytics/ultralytics)
- [Aegis AI Model Zoo](https://huggingface.co/aegis-ai)

## Support

For issues with this converted model or the conversion tool:
- [GitHub Issues](https://github.com/aegis-ai/model-conversion-tool/issues)
- [Aegis AI Documentation](https://docs.aegis-ai.com)

---

*This model was automatically converted and uploaded by the Aegis AI Model Conversion Tool.*