Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: YOLO Model
|
3 |
+
tags:
|
4 |
+
- yolo
|
5 |
+
- object-detection
|
6 |
+
- computer-vision
|
7 |
+
- unknown
|
8 |
+
- aegis-ai
|
9 |
+
library_name: ultralytics
|
10 |
+
license: agpl-3.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# YOLO Model
|
14 |
+
|
15 |
+
This model has been converted and optimized using the **Aegis AI Model Conversion Tool**.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
- **Original Model**: Unknown
|
20 |
+
- **Format**: UNKNOWN
|
21 |
+
- **Task**: Object Detection
|
22 |
+
- **Framework**: Ultralytics YOLO
|
23 |
+
- **License**: AGPL-3.0
|
24 |
+
|
25 |
+
## Performance Metrics
|
26 |
+
|
27 |
+
| Metric | Value |
|
28 |
+
|--------|--------|
|
29 |
+
| Average FPS | N/A |
|
30 |
+
| Inference Time | N/A ms |
|
31 |
+
| Memory Usage | N/A MB |
|
32 |
+
| Target Hardware | cpu |
|
33 |
+
|
34 |
+
## Hardware Information
|
35 |
+
|
36 |
+
- **Platform**: Unknown
|
37 |
+
- **Device**: cpu
|
38 |
+
- **Optimization**: Hardware-specific optimizations applied
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
### Loading the Model
|
43 |
+
|
44 |
+
```python
|
45 |
+
# For ONNX models
|
46 |
+
import onnxruntime as ort
|
47 |
+
session = ort.InferenceSession("model.onnx")
|
48 |
+
|
49 |
+
# For PyTorch models
|
50 |
+
from ultralytics import YOLO
|
51 |
+
model = YOLO("model.pt")
|
52 |
+
|
53 |
+
# For TensorRT models (NVIDIA GPU)
|
54 |
+
# Requires TensorRT runtime
|
55 |
+
model = YOLO("model.engine")
|
56 |
+
```
|
57 |
+
|
58 |
+
### Inference
|
59 |
+
|
60 |
+
```python
|
61 |
+
import numpy as np
|
62 |
+
from PIL import Image
|
63 |
+
|
64 |
+
# Load your image
|
65 |
+
image = Image.open("path/to/image.jpg")
|
66 |
+
|
67 |
+
# Run inference
|
68 |
+
results = model(image)
|
69 |
+
|
70 |
+
# Process results
|
71 |
+
for result in results:
|
72 |
+
boxes = result.boxes # Bounding boxes
|
73 |
+
classes = result.names # Class names
|
74 |
+
```
|
75 |
+
|
76 |
+
## Conversion Details
|
77 |
+
|
78 |
+
This model was converted using the Aegis AI Model Conversion Tool with the following configuration:
|
79 |
+
|
80 |
+
- **Precision**: fp32
|
81 |
+
- **Optimization Level**: standard
|
82 |
+
- **Hardware Target**: cpu
|
83 |
+
- **Conversion Date**: 2025-08-18 15:11:05
|
84 |
+
|
85 |
+
## Model Architecture
|
86 |
+
|
87 |
+
Based on the YOLO (You Only Look Once) architecture, this model provides real-time object detection capabilities with optimized performance for the target hardware.
|
88 |
+
|
89 |
+
### Input
|
90 |
+
|
91 |
+
- **Shape**: 640x640
|
92 |
+
- **Format**: RGB images
|
93 |
+
- **Normalization**: [0-1] range
|
94 |
+
|
95 |
+
### Output
|
96 |
+
|
97 |
+
- **Bounding Boxes**: Object locations
|
98 |
+
- **Confidence Scores**: Detection confidence
|
99 |
+
- **Class Predictions**: Object categories
|
100 |
+
|
101 |
+
## Benchmarking
|
102 |
+
|
103 |
+
The model has been benchmarked on the target hardware with the following results:
|
104 |
+
|
105 |
+
```json
|
106 |
+
{}
|
107 |
+
```
|
108 |
+
|
109 |
+
## Hardware Compatibility
|
110 |
+
|
111 |
+
This model has been optimized for:
|
112 |
+
- **Primary**: cpu
|
113 |
+
- **Platform**: Unknown
|
114 |
+
|
115 |
+
For other hardware configurations, consider using the Aegis AI Model Conversion Tool to create optimized versions.
|
116 |
+
|
117 |
+
## Citation
|
118 |
+
|
119 |
+
If you use this model in your research or project, please cite:
|
120 |
+
|
121 |
+
```bibtex
|
122 |
+
@misc{aegis-ai-converted-model,
|
123 |
+
title={Aegis AI Converted YOLO Model},
|
124 |
+
author={Aegis AI Team},
|
125 |
+
year={2025},
|
126 |
+
howpublished={\url{https://github.com/aegis-ai/model-conversion-tool}}
|
127 |
+
}
|
128 |
+
```
|
129 |
+
|
130 |
+
## Related Models
|
131 |
+
|
132 |
+
- [Original YOLO Models](https://github.com/ultralytics/ultralytics)
|
133 |
+
- [Aegis AI Model Zoo](https://huggingface.co/aegis-ai)
|
134 |
+
|
135 |
+
## Support
|
136 |
+
|
137 |
+
For issues with this converted model or the conversion tool:
|
138 |
+
- [GitHub Issues](https://github.com/aegis-ai/model-conversion-tool/issues)
|
139 |
+
- [Aegis AI Documentation](https://docs.aegis-ai.com)
|
140 |
+
|
141 |
+
---
|
142 |
+
|
143 |
+
*This model was automatically converted and uploaded by the Aegis AI Model Conversion Tool.*
|