./whisper-base-ea_base

This model is a fine-tuned version of openai/whisper-base on the Afrispeech-200 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6880
  • Wer Ortho: 0.2755
  • Wer: 0.2202
  • Cer: 0.0998
  • Precision: 0.8628
  • Recall: 0.8622
  • F1: 0.8616

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Precision Recall F1
0.9241 0.4237 100 0.8794 0.2973 0.2468 0.1060 0.8428 0.8469 0.8443
0.7528 0.8475 200 0.7464 0.2903 0.2354 0.1032 0.8583 0.8593 0.8581
0.5275 1.2712 300 0.7158 0.2778 0.2285 0.1000 0.8619 0.8627 0.8616
0.5686 1.6949 400 0.6956 0.2805 0.2255 0.1021 0.8638 0.8632 0.8626
0.3472 2.1186 500 0.6880 0.2755 0.2202 0.0998 0.8628 0.8622 0.8616

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Setosm/whisper-base-ea_base

Finetuned
(570)
this model