|
--- |
|
library_name: transformers |
|
license: mit |
|
datasets: |
|
- SemEvalWorkshop/sem_eval_2010_task_8 |
|
language: |
|
- en |
|
base_model: |
|
- google/flan-t5-base |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** Sefika Efeoglu |
|
|
|
- **Model type:** text-to-text |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** https://huggingface.co/google/flan-t5-base |
|
|
|
|
|
## Uses |
|
|
|
```python |
|
import json |
|
import torch |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForCausalLM |
|
from datetime import datetime |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") |
|
model_id = "Sefika/semeval_prompt_tuning_5" |
|
model = T5ForConditionalGeneration.from_pretrained(model_id, |
|
device_map="auto", |
|
load_in_8bit=False, |
|
torch_dtype=torch.float16) |
|
prompt = """Example Sentence:The purpose of the <e1>audit</e1> was to report on the <e2>financial statements</e2>.\n"""+\ |
|
"""Sentence: Query Sentence:The most common <e1>audits</e1> were about <e2>waste</e2> and recycling.\n"""+\ |
|
"""What is the relation type between e1: audits. and e2 : waste. according to given relation types below in the sentence?\n"""+\ |
|
"""Relation types: Relation types: Cause-Effect(e2,e1), Content-Container(e1,e2), Member-Collection(e1,e2), Instrument-Agency(e1,e2), Product-Producer(e2,e1), Member-Collection(e2,e1), Message-Topic(e1,e2), Entity-Origin(e2,e1), Message-Topic(e2,e1), Instrument-Agency(e2,e1), Content-Container(e2,e1), Product-Producer(e1,e2), Entity-Origin(e1,e2), Component-Whole(e1,e2), Entity-Destination(e1,e2), Other, Cause-Effect(e1,e2), Component-Whole(e2,e1), Entity-Destination(e2,e1). \n""" |
|
inputs = self.tokenizer(prompt, add_special_tokens=True, max_length=526,return_tensors="pt").input_ids.to("cuda") |
|
|
|
outputs = self.model.generate(inputs, max_new_tokens=length, pad_token_id=self.tokenizer.eos_token_id) |
|
|
|
response = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
print(response[0]) |
|
#"Cause-Effect(e1,e2)" |
|
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
semeval-2010-task8 |
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
5 fold cross validation with sentence and relation types. Input is sentence and the output is relation types |
|
|
|
#### Training Hyperparameters |
|
|
|
Epoch:5, BS:16 and others are default. |
|
|
|
#### Hardware |
|
|
|
Colab Pro+ A100. |
|
|
|
|
|
|
|
## Citation [optional] |
|
|
|
Efeoglu, Sefika, and Adrian Paschke. "Retrieval-Augmented Generation-based Relation Extraction." arXiv preprint arXiv:2404.13397 (2024). |