|
---
|
|
library_name: transformers
|
|
tags:
|
|
- bangla
|
|
- bangla-classifier
|
|
- multiclass-classifier
|
|
- text-classifier
|
|
datasets:
|
|
- SayedShaun/sentigold
|
|
language:
|
|
- bn
|
|
metrics:
|
|
- accuracy
|
|
base_model:
|
|
- csebuetnlp/banglabert
|
|
pipeline_tag: text-classification
|
|
---
|
|
|
|
# Bangla Binary Text Classifier |
|
|
|
## Description |
|
|
|
This is a **Bangla binary sentiment classification** model, fine-tuned on top of [`csebuetnlp/banglabert`](https://huggingface.co/csebuetnlp/banglabert). The model was trained using the [**SayedShaun/sentigold**](https://huggingface.co/datasets/SayedShaun/sentigold) |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-classification", model="SayedShaun/bangla-classifier-multiclass") |
|
|
|
response = pipe("ডেলিভারি ম্যান খুব যত্ন সহকারে পণ্যটি ডেলিভারি করেছে") |
|
print(response) |
|
# Output: [{'label': 'LABEL_0', 'score': 0.9503920674324036}] |
|
``` |
|
|
|
## Tags |
|
``` |
|
{"SP" :0, "WP": 1, "WN": 2, "SN": 3, "NU": 4} |
|
|
|
SP: Strongly Positive |
|
WP: Weakly Positive |
|
WN: Weakly Positive Negative |
|
SN: Strongly Negative |
|
NU: Neutral |
|
``` |
|
|
|
## Result |
|
| Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score | |
|
|---------------|-----------------|-----------|-----------|----------|-----------| |
|
| 0.820600 | 0.916846 | 0.646714 | 0.649295 | 0.642749 | 0.643535 | |
|
|
|
|
|
# Source Code |
|
Source code can be found in `files and versions` as `finetune.py` |