File size: 5,032 Bytes
1cbe253 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
frameworks:
- Pytorch
tasks:
- text-to-image-synthesis
#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt
#domain:
##如 nlp、cv、audio、multi-modal
#- nlp
#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn
#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr
#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained
#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
base_model:
- Qwen/Qwen-Image
base_model_relation: adapter
---
# Qwen-Image Image Structure Control Model

## Model Introduction
This model is a LoRA for image structure control, trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image), adopting the In Context technical approach. It supports multiple conditions: canny, depth, lineart, softedge, normal, and openpose. The training framework is built upon [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) , and the dataset used is[Qwen-Image-Self-Generated-Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Qwen-Image-Self-Generated-Dataset) It is recommended to start the input Prompt with "Context_Control. ".
Please note that when using Openpose control, due to the particularity of this type of control, it cannot achieve a similar "point-to-point" control effect as other control types.
## Effect Demonstration
|Control Condition|Control Image|Generated Image 1|Generated Image 2|
|-|-|-|-|
|canny||||
|depth||||
|lineart||||
|softedge||||
|normal||||
|openpose||||
## Inference Code
```
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
```
```python
from PIL import Image
import torch
from modelscope import dataset_snapshot_download, snapshot_download
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig
from diffsynth.controlnets.processors import Annotator
allow_file_pattern = ["sk_model.pth", "sk_model2.pth", "dpt_hybrid-midas-501f0c75.pt", "ControlNetHED.pth", "body_pose_model.pth", "hand_pose_model.pth", "facenet.pth", "scannet.pt"]
snapshot_download("lllyasviel/Annotators", local_dir="models/Annotators", allow_file_pattern=allow_file_pattern)
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
],
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
snapshot_download("DiffSynth-Studio/Qwen-Image-In-Context-Control-Union", local_dir="models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union", allow_file_pattern="model.safetensors")
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union/model.safetensors")
dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/qwen-image-context-control/image.jpg")
origin_image = Image.open("data/examples/qwen-image-context-control/image.jpg").resize((1024, 1024))
annotator_ids = ['openpose', 'canny', 'depth', 'lineart', 'softedge', 'normal']
for annotator_id in annotator_ids:
annotator = Annotator(processor_id=annotator_id, device="cuda")
control_image = annotator(origin_image)
control_image.save(f"{annotator.processor_id}.png")
control_prompt = "Context_Control. "
prompt = f"{control_prompt}一A beautiful girl in light blue is dancing against a dreamy starry sky with interweaving light and shadow and exquisite details."
negative_prompt = "Mesh, regular grid, blurry, low resolution, low quality, distorted, deformed, wrong anatomy, distorted hands, distorted body, distorted face, distorted hair, distorted eyes, distorted mouth"
image = pipe(prompt, seed=1, negative_prompt=negative_prompt, context_image=control_image, height=1024, width=1024)
image.save(f"image_{annotator.processor_id}.png")
```
---
license: apache-2.0
---
|