Qwen-Image Image Structure Control Model
Model Introduction
This model is a local image redraw model trained based on Qwen-Image , with a model structure of ControlNet, capable of redrawing local areas of an image. The training framework is built on DiffSynth-Studio , and the dataset used is Qwen-Image-Self-Generated-Dataset。
This model is compatible with both Qwen-Image and Qwen-Image-Edit,It can perform local redrawing on Qwen-Image and edit specified areas on Qwen-Image-Edit.
Effect Demonstration
Limitations
Inpaint models based on the ControlNet structure may result in disharmonious boundaries between the redrawn and non-redrawn areas.
The model is trained on rectangular area redraw data, so its generalization to non-rectangular areas might not be optimal.
Inference Code
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
Qwen-Image:
import torch
from PIL import Image
from modelscope import dataset_snapshot_download
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint", origin_file_pattern="model.safetensors"),
],
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/example_image_dataset",
local_dir="./data/example_image_dataset",
allow_file_pattern="inpaint/*.jpg"
)
prompt = "a cat with sunglasses"
controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1328, 1328))
inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1328, 1328))
image = pipe(
prompt, seed=0,
input_image=controlnet_image, inpaint_mask=inpaint_mask,
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)],
num_inference_steps=40,
)
image.save("image.jpg")
Qwen-Image-Edit:
import torch
from PIL import Image
from modelscope import dataset_snapshot_download
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint", origin_file_pattern="model.safetensors"),
],
tokenizer_config=None,
processor_config=ModelConfig(model_id="Qwen/Qwen-Image-Edit", origin_file_pattern="processor/"),
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/example_image_dataset",
local_dir="./data/example_image_dataset",
allow_file_pattern="inpaint/*.jpg"
)
prompt = "Put sunglasses on this cat"
controlnet_image = Image.open("./data/example_image_dataset/inpaint/image_1.jpg").convert("RGB").resize((1328, 1328))
inpaint_mask = Image.open("./data/example_image_dataset/inpaint/mask.jpg").convert("RGB").resize((1328, 1328))
image = pipe(
prompt, seed=0,
input_image=controlnet_image, inpaint_mask=inpaint_mask,
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image, inpaint_mask=inpaint_mask)],
num_inference_steps=40,
edit_image=controlnet_image, # add edit_image here.
)
image.save("image.jpg")
license: apache-2.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for SahilCarterr/Qwen-Image-Blockwise-ControlNet-Inpaint
Base model
Qwen/Qwen-Image