quantization / cutlass_w8a8 /c3x /scaled_mm_blockwise_sm100_fp8_dispatch.cuh
danieldk's picture
danieldk HF Staff
Sync to vLLM 20250627
8aa00a3
#pragma once
#include "cuda_utils.h"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cutlass/epilogue/dispatch_policy.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass_extensions/gemm/dispatch_policy.hpp"
#include "cutlass_extensions/gemm/collective/collective_builder.hpp"
#include "cutlass_gemm_caller.cuh"
namespace vllm {
using namespace cute;
// clang-format off
template <class OutType, int ScaleGranularityM,
int ScaleGranularityN, int ScaleGranularityK,
class MmaTileShape, class ClusterShape,
class EpilogueScheduler, class MainloopScheduler,
bool swap_ab_ = false>
struct cutlass_3x_gemm_fp8_blockwise {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = cutlass::float_e4m3_t;
using ElementA = ElementAB;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = ElementAB;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementD = OutType;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
using ElementC = void; // TODO: support bias
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
static constexpr int AlignmentC = AlignmentD;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementBlockScale = float;
using ScaleConfig = conditional_t<swap_ab,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
using ArchTag = cutlass::arch::Sm100;
using OperatorClass = cutlass::arch::OpClassTensorOp;
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
using ElementScalar = float;
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
MmaTileShape,
ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator,
ElementCompute,
ElementC,
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
AlignmentC,
ElementD,
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
AlignmentD,
EpilogueScheduler,
DefaultOperation
>::CollectiveOp;
using StageCountType = cutlass::gemm::collective::StageCountAuto;
using CollectiveMainloop = conditional_t<swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementB,
cute::tuple<LayoutB_Transpose, LayoutSFA>,
AlignmentB,
ElementA,
cute::tuple<LayoutA_Transpose, LayoutSFB>,
AlignmentA,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp>;
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm>
void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
static constexpr bool swap_ab = Gemm::swap_ab;
using GemmKernel = typename Gemm::GemmKernel;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideD = typename Gemm::GemmKernel::StrideD;
using StrideC = typename Gemm::GemmKernel::StrideC;
using LayoutSFA = typename Gemm::LayoutSFA;
using LayoutSFB = typename Gemm::LayoutSFB;
using ScaleConfig = typename Gemm::ScaleConfig;
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
StrideA a_stride;
StrideB b_stride;
StrideC c_stride;
a_stride =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
b_stride =
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
c_stride =
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
LayoutSFA layout_SFA = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
LayoutSFB layout_SFB = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
auto mainloop_args = [&](){
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
if (swap_ab) {
return typename GemmKernel::MainloopArguments{
b_ptr, b_stride, a_ptr, a_stride,
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
};
}
else {
return typename GemmKernel::MainloopArguments{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
};
}
}();
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
{}, c_ptr, c_stride, c_ptr, c_stride};
c3x::cutlass_gemm_caller<GemmKernel>(a.device(), prob_shape, mainloop_args,
epilogue_args);
}
template <typename OutType>
void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
constexpr int TILE_K = 128;
// TODO: better heuristics
bool swap_ab = (m < 16) || (m % 4 != 0);
bool use_tma_epilogue = (m * n) % 4 == 0;
if (!swap_ab) {
constexpr int TILE_N = 128;
int tile_m = 256;
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
tile_m = 64;
}
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
tile_m = 128;
}
if (tile_m == 64) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else if (tile_m == 128) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else { // tile_m == 256
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
}
} else {
// TODO: Test more tile N configs
constexpr int TILE_M = 128;
constexpr int TILE_N = 16;
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm