File size: 11,538 Bytes
8aa00a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
#pragma once
#include "cuda_utils.h"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cutlass/epilogue/dispatch_policy.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass_extensions/gemm/dispatch_policy.hpp"
#include "cutlass_extensions/gemm/collective/collective_builder.hpp"
#include "cutlass_gemm_caller.cuh"
namespace vllm {
using namespace cute;
// clang-format off
template <class OutType, int ScaleGranularityM,
int ScaleGranularityN, int ScaleGranularityK,
class MmaTileShape, class ClusterShape,
class EpilogueScheduler, class MainloopScheduler,
bool swap_ab_ = false>
struct cutlass_3x_gemm_fp8_blockwise {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = cutlass::float_e4m3_t;
using ElementA = ElementAB;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = ElementAB;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementD = OutType;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
using ElementC = void; // TODO: support bias
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
static constexpr int AlignmentC = AlignmentD;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementBlockScale = float;
using ScaleConfig = conditional_t<swap_ab,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
using ArchTag = cutlass::arch::Sm100;
using OperatorClass = cutlass::arch::OpClassTensorOp;
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
using ElementScalar = float;
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
MmaTileShape,
ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator,
ElementCompute,
ElementC,
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
AlignmentC,
ElementD,
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
AlignmentD,
EpilogueScheduler,
DefaultOperation
>::CollectiveOp;
using StageCountType = cutlass::gemm::collective::StageCountAuto;
using CollectiveMainloop = conditional_t<swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementB,
cute::tuple<LayoutB_Transpose, LayoutSFA>,
AlignmentB,
ElementA,
cute::tuple<LayoutA_Transpose, LayoutSFB>,
AlignmentA,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp>;
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
struct GemmKernel : public KernelType {};
};
template <typename Gemm>
void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
static constexpr bool swap_ab = Gemm::swap_ab;
using GemmKernel = typename Gemm::GemmKernel;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideD = typename Gemm::GemmKernel::StrideD;
using StrideC = typename Gemm::GemmKernel::StrideC;
using LayoutSFA = typename Gemm::LayoutSFA;
using LayoutSFB = typename Gemm::LayoutSFB;
using ScaleConfig = typename Gemm::ScaleConfig;
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
StrideA a_stride;
StrideB b_stride;
StrideC c_stride;
a_stride =
cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(m, k, 1));
b_stride =
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
c_stride =
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
LayoutSFA layout_SFA = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
LayoutSFB layout_SFB = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
auto mainloop_args = [&](){
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
if (swap_ab) {
return typename GemmKernel::MainloopArguments{
b_ptr, b_stride, a_ptr, a_stride,
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
};
}
else {
return typename GemmKernel::MainloopArguments{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
};
}
}();
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
{}, c_ptr, c_stride, c_ptr, c_stride};
c3x::cutlass_gemm_caller<GemmKernel>(a.device(), prob_shape, mainloop_args,
epilogue_args);
}
template <typename OutType>
void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
constexpr int TILE_K = 128;
// TODO: better heuristics
bool swap_ab = (m < 16) || (m % 4 != 0);
bool use_tma_epilogue = (m * n) % 4 == 0;
if (!swap_ab) {
constexpr int TILE_N = 128;
int tile_m = 256;
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
tile_m = 64;
}
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
tile_m = 128;
}
if (tile_m == 64) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else if (tile_m == 128) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else { // tile_m == 256
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
}
} else {
// TODO: Test more tile N configs
constexpr int TILE_M = 128;
constexpr int TILE_N = 16;
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}
} // namespace vllm
|