|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- audio |
|
- int4 |
|
license: mit |
|
base_model: google/gemma-3n-E2B-it |
|
library_name: transformers |
|
--- |
|
|
|
# RedHatAI/gemma-3n-E2B-it-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** gemma-3n-E2B-it |
|
- **Input:** Audio-Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Activation quantization:** INT16 |
|
- **Release Date:** 08/01/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** RedHatAI |
|
|
|
Quantized version of [google/gemma-3n-E2B-it](https://huggingface.co/google/gemma-3n-E2B-it). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [google/gemma-3n-E2B-it](https://huggingface.co/google/gemma-3n-E2B-it) to INT4 data type, ready for inference with vLLM >= 0.10.0 |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="RedHatAI/gemma-3n-E2B-it-quantized.w4a16", |
|
trust_remote_code=True, |
|
max_model_len=4096, |
|
max_num_seqs=2, |
|
) |
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
inputs = { |
|
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", |
|
"multi_modal_data": { |
|
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3nForConditionalGeneration |
|
|
|
from llmcompressor import oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.utils import dispatch_for_generation |
|
|
|
# Load model. |
|
model_id = "google/gemma-3n-E2B-it" |
|
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto") |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Oneshot arguments |
|
DATASET_ID = "flickr30k" |
|
DATASET_SPLIT = {"calibration": "test[:512]"} |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
def data_collator(batch): |
|
assert len(batch) == 1 |
|
return {key: torch.tensor(value) for key, value in batch[0].items()} |
|
|
|
dampening_frac=0.01 |
|
|
|
# Recipe |
|
recipe = [ |
|
GPTQModifier( |
|
targets="Linear", |
|
scheme="W4A16", |
|
ignore=[ |
|
"re:.*embed_audio.*", |
|
"re:.*embed_vision.*", |
|
"re:.*audio_tower.*", |
|
"re:.*vision_tower.*", |
|
"re:.*altup.*", |
|
"re:.*lm_head.*", |
|
"re:.*laurel.*", |
|
"re:model\.language_model\.layers\.\d+\.per_layer_input_gate", |
|
"re:model\.language_model\.layers\.\d+\.per_layer_projection", |
|
"model.language_model.per_layer_model_projection", |
|
], |
|
dampening_frac=dampening_frac |
|
), |
|
] |
|
|
|
SAVE_DIR = f"{model_id.split('/')[1]}-quantized.{recipe[0].scheme}" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
tokenizer=model_id, |
|
dataset=DATASET_ID, |
|
splits=DATASET_SPLIT, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
trust_remote_code_model=True, |
|
data_collator=data_collator, |
|
# gemma3n has broken weight offloading which is required by the sequential pipeline |
|
pipeline="basic", |
|
# gemma3n does not support untying word embeddings |
|
tie_word_embeddings=True, |
|
output_dir=SAVE_DIR, |
|
) |
|
|
|
# Save to disk compressed. |
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
processor.save_pretrained(SAVE_DIR) |
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### OpenLLM V1 |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \ |
|
--tasks openllm \ |
|
--batch_size auto \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn |
|
|
|
``` |
|
|
|
### Leaderboard V2 |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \ |
|
--tasks leaderboard \ |
|
--batch_size auto \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn |
|
|
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>google/gemma-3n-E2B-it</th> |
|
<th>RedHatAI/gemma-3n-E2B-it-quantized.w4a16</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
<td>arc_challenge</td> |
|
<td>50.60</td> |
|
<td>47.35</td> |
|
<td>93.57%</td> |
|
</tr> |
|
<tr> |
|
<td>gsm8k</td> |
|
<td>48.07</td> |
|
<td>24.34</td> |
|
<td>50.65%</td> |
|
</tr> |
|
<tr> |
|
<td>hellaswag</td> |
|
<td>67.78</td> |
|
<td>64.89</td> |
|
<td>95.74%</td> |
|
</tr> |
|
<tr> |
|
<td>mmlu</td> |
|
<td>59.92</td> |
|
<td>57.81</td> |
|
<td>96.48%</td> |
|
</tr> |
|
<tr> |
|
<td>truthfulqa_mc2</td> |
|
<td>49.98</td> |
|
<td>49.02</td> |
|
<td>98.08%</td> |
|
</tr> |
|
<tr> |
|
<td>winogrande</td> |
|
<td>65.11</td> |
|
<td>63.61</td> |
|
<td>97.70%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average</b></td> |
|
<td>56.91</td> |
|
<td>51.17</td> |
|
<td><b>89.91%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="7"><b>Leaderboard</b></td> |
|
<td>bbh</td> |
|
<td>53.32</td> |
|
<td>51.35</td> |
|
<td>96.30%</td> |
|
</tr> |
|
<tr> |
|
<td>mmlu_pro</td> |
|
<td>29.76</td> |
|
<td>27.13</td> |
|
<td>91.12%</td> |
|
</tr> |
|
<tr> |
|
<td>musr</td> |
|
<td>34.52</td> |
|
<td>37.83</td> |
|
<td>109.59%</td> |
|
</tr> |
|
<tr> |
|
<td>ifeval</td> |
|
<td>80.22</td> |
|
<td>78.30</td> |
|
<td>97.60%</td> |
|
</tr> |
|
<tr> |
|
<td>gpqa</td> |
|
<td>30.54</td> |
|
<td>30.45</td> |
|
<td>99.70%</td> |
|
</tr> |
|
<tr> |
|
<td>math_hard</td> |
|
<td>34.52</td> |
|
<td>23.41</td> |
|
<td>67.83%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average</b></td> |
|
<td>43.81</td> |
|
<td>41.41</td> |
|
<td><b>94.52%</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|