nm-research's picture
Update README.md
249ba2c verified
---
tags:
- vllm
- vision
- audio
- int4
license: mit
base_model: google/gemma-3n-E2B-it
library_name: transformers
---
# RedHatAI/gemma-3n-E2B-it-quantized.w4a16
## Model Overview
- **Model Architecture:** gemma-3n-E2B-it
- **Input:** Audio-Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Activation quantization:** INT16
- **Release Date:** 08/01/2025
- **Version:** 1.0
- **Model Developers:** RedHatAI
Quantized version of [google/gemma-3n-E2B-it](https://huggingface.co/google/gemma-3n-E2B-it).
### Model Optimizations
This model was obtained by quantizing the weights of [google/gemma-3n-E2B-it](https://huggingface.co/google/gemma-3n-E2B-it) to INT4 data type, ready for inference with vLLM >= 0.10.0
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="RedHatAI/gemma-3n-E2B-it-quantized.w4a16",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.utils import dispatch_for_generation
# Load model.
model_id = "google/gemma-3n-E2B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) for key, value in batch[0].items()}
dampening_frac=0.01
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
scheme="W4A16",
ignore=[
"re:.*embed_audio.*",
"re:.*embed_vision.*",
"re:.*audio_tower.*",
"re:.*vision_tower.*",
"re:.*altup.*",
"re:.*lm_head.*",
"re:.*laurel.*",
"re:model\.language_model\.layers\.\d+\.per_layer_input_gate",
"re:model\.language_model\.layers\.\d+\.per_layer_projection",
"model.language_model.per_layer_model_projection",
],
dampening_frac=dampening_frac
),
]
SAVE_DIR = f"{model_id.split('/')[1]}-quantized.{recipe[0].scheme}"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=DATASET_ID,
splits=DATASET_SPLIT,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
# gemma3n has broken weight offloading which is required by the sequential pipeline
pipeline="basic",
# gemma3n does not support untying word embeddings
tie_word_embeddings=True,
output_dir=SAVE_DIR,
)
# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
```
</details>
## Evaluation
The model was evaluated using [lm_evaluation_harness](https://github.com/EleutherAI/lm-evaluation-harness) for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:
<details>
<summary>Evaluation Commands</summary>
### OpenLLM V1
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
```
### Leaderboard V2
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks leaderboard \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>google/gemma-3n-E2B-it</th>
<th>RedHatAI/gemma-3n-E2B-it-quantized.w4a16</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>arc_challenge</td>
<td>50.60</td>
<td>47.35</td>
<td>93.57%</td>
</tr>
<tr>
<td>gsm8k</td>
<td>48.07</td>
<td>24.34</td>
<td>50.65%</td>
</tr>
<tr>
<td>hellaswag</td>
<td>67.78</td>
<td>64.89</td>
<td>95.74%</td>
</tr>
<tr>
<td>mmlu</td>
<td>59.92</td>
<td>57.81</td>
<td>96.48%</td>
</tr>
<tr>
<td>truthfulqa_mc2</td>
<td>49.98</td>
<td>49.02</td>
<td>98.08%</td>
</tr>
<tr>
<td>winogrande</td>
<td>65.11</td>
<td>63.61</td>
<td>97.70%</td>
</tr>
<tr>
<td><b>Average</b></td>
<td>56.91</td>
<td>51.17</td>
<td><b>89.91%</b></td>
</tr>
<tr>
<td rowspan="7"><b>Leaderboard</b></td>
<td>bbh</td>
<td>53.32</td>
<td>51.35</td>
<td>96.30%</td>
</tr>
<tr>
<td>mmlu_pro</td>
<td>29.76</td>
<td>27.13</td>
<td>91.12%</td>
</tr>
<tr>
<td>musr</td>
<td>34.52</td>
<td>37.83</td>
<td>109.59%</td>
</tr>
<tr>
<td>ifeval</td>
<td>80.22</td>
<td>78.30</td>
<td>97.60%</td>
</tr>
<tr>
<td>gpqa</td>
<td>30.54</td>
<td>30.45</td>
<td>99.70%</td>
</tr>
<tr>
<td>math_hard</td>
<td>34.52</td>
<td>23.41</td>
<td>67.83%</td>
</tr>
<tr>
<td><b>Average</b></td>
<td>43.81</td>
<td>41.41</td>
<td><b>94.52%</b></td>
</tr>
</tbody>
</table>