nm-research's picture
Update README.md
e386c2d verified
---
tags:
- vllm
- vision
- fp8
license: apache-2.0
license_link: >-
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: google/gemma-3-12b-it
library_name: transformers
---
# gemma-3-12b-it-FP8-Dynamic
## Model Overview
- **Model Architecture:** gemma-3-12b-it
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 2/24/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it).
### Model Optimizations
This model was obtained by quantizing the weights of [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
# Define model name once
model_name = "RedHatAI/gemma-3-12b-it-FP8-dynamic"
# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Build multimodal prompt
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)
# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
# Display result
print("RESPONSE:", outputs[0].outputs[0].text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
<details>
<summary>Model Creation Code</summary>
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Load model.
model_id = google/gemma-3-12b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["Gemma3DecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
# Perform oneshot
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
```
</details>
## Evaluation
The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
<details>
<summary>Evaluation Commands</summary>
### OpenLLM v1
```
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>google/gemma-3-12b-it</th>
<th>RedHatAI/gemma-3-12b-it-FP8-Dynamic</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC Challenge</td>
<td>68.43%</td>
<td>68.86%</td>
<td>100.62%</td>
</tr>
<tr>
<td>GSM8K</td>
<td>88.10%</td>
<td>88.02%</td>
<td>99.91%</td>
</tr>
<tr>
<td>Hellaswag</td>
<td>83.76%</td>
<td>83.78%</td>
<td>100.02%</td>
</tr>
<tr>
<td>MMLU</td>
<td>72.15%</td>
<td>71.80%</td>
<td>99.51%</td>
</tr>
<tr>
<td>Truthfulqa (mc2)</td>
<td>58.13%</td>
<td>59.35%</td>
<td>102.09%</td>
</tr>
<tr>
<td>Winogrande</td>
<td>79.40%</td>
<td>79.48%</td>
<td>100.10%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>74.99%</b></td>
<td><b>75.21%</b></td>
<td><b>100.29%</b></td>
</tr>
<tr>
<td rowspan="3"><b>Vision Evals</b></td>
<td>MMMU (val)</td>
<td>48.78%</td>
<td>49.00%</td>
<td>100.45%</td>
</tr>
<tr>
<td>ChartQA</td>
<td>68.08%</td>
<td>68.88%</td>
<td>101.18%</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>58.43%</b></td>
<td><b>58.94%</b></td>
<td><b>100.81%</b></td>
</tr>
</tbody>
</table>