tags:
  - vllm
  - vision
  - w8a8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers
Qwen2.5-VL-7B-Instruct-quantized-w8a8
Model Overview
- Model Architecture: Qwen/Qwen2.5-VL-7B-Instruct
- Input: Vision-Text
 - Output: Text
 
 - Model Optimizations:
- Weight quantization: INT8
 - Activation quantization: INT8
 
 - Release Date: 2/24/2025
 - Version: 1.0
 - Model Developers: Neural Magic
 
Quantized version of Qwen/Qwen2.5-VL-7B-Instruct.
Model Optimizations
This model was obtained by quantizing the weights of Qwen/Qwen2.5-VL-7B-Instruct to INT8 data type, ready for inference with vLLM >= 0.5.2.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
    model="neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.
Model Creation Code
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
    TraceableQwen2_5_VLForConditionalGeneration,
)
# Load model.
model_id = "Qwen/Qwen2.5-VL-7B-Instruct"
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="auto",
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "lmms-lab/flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
dampening_frac=0.01
# Apply chat template and tokenize inputs.
def preprocess_and_tokenize(example):
    # preprocess
    buffered = BytesIO()
    example["image"].save(buffered, format="PNG")
    encoded_image = base64.b64encode(buffered.getvalue())
    encoded_image_text = encoded_image.decode("utf-8")
    base64_qwen = f"data:image;base64,{encoded_image_text}"
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": base64_qwen},
                {"type": "text", "text": "What does the image show?"},
            ],
        }
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    # tokenize
    return processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
    )
ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names)
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
    assert len(batch) == 1
    return {key: torch.tensor(value) for key, value in batch[0].items()}
# Recipe
recipe = [
    GPTQModifier(
        targets="Linear",
        scheme="W8A8",
        sequential_targets=["Qwen2_5_VLDecoderLayer"],
        ignore=["lm_head", "re:visual.*"],
    ),
]
SAVE_DIR==f"{model_id.split('/')[1]}-quantized.w8a8"
# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=data_collator,
    output_dir=SAVE_DIR
)
Evaluation
The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:
Evaluation Commands
Accuracy
Inference Performance
This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.
Benchmarking Command
``` guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```Single-stream performance (measured with vLLM version 0.7.2)
| Document Visual Question Answering 1680W x 2240H 64/128  | 
      Visual Reasoning  640W x 480H 128/128  | 
      Image Captioning 480W x 360H 0/128  | 
    ||||||
|---|---|---|---|---|---|---|---|---|
| Hardware | Model | Average Cost Reduction | Latency (s) | QPD | Latency (s)th> | QPD | Latency (s) | QPD | 
| A100x1 | Qwen/Qwen2.5-VL-7B-Instruct | 2.8 | 707 | 1.7 | 1162 | 1.7 | 1198 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 | 1.24 | 2.4 | 851 | 1.4 | 1454 | 1.3 | 1512 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 | 1.49 | 2.2 | 912 | 1.1 | 1791 | 1.0 | 1950 | |
| H100x1 | Qwen/Qwen2.5-VL-7B-Instruct | 2.0 | 557 | 1.2 | 919 | 1.2 | 941 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic | 1.28 | 1.6 | 698 | 0.9 | 1181 | 0.9 | 1219 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 | 1.28 | 1.6 | 686 | 0.9 | 1191 | 0.9 | 1228 | |
Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
| Document Visual Question Answering 1680W x 2240H 64/128  | 
      Visual Reasoning  640W x 480H 128/128  | 
      Image Captioning 480W x 360H 0/128  | 
    ||||||
|---|---|---|---|---|---|---|---|---|
| Hardware | Model | Average Cost Reduction | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | Maximum throughput (QPS) | QPD | 
| A100x1 | Qwen/Qwen2.5-VL-7B-Instruct-quantized. | 0.7 | 1347 | 2.6 | 5221 | 3.0 | 6122 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 | 1.27 | 0.8 | 1639 | 3.4 | 6851 | 3.9 | 7918 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 | 1.21 | 0.7 | 1314 | 3.0 | 5983 | 4.6 | 9206 | |
| H100x1 | Qwen/Qwen2.5-VL-7B-Instruct | 0.9 | 969 | 3.1 | 3358 | 3.3 | 3615 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic | 1.29 | 1.2 | 1331 | 3.8 | 4109 | 4.2 | 4598 | |
| neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 | 1.28 | 1.2 | 1298 | 3.8 | 4190 | 4.2 | 4573 | |