Update README.md
Browse files
README.md
CHANGED
|
@@ -21,7 +21,7 @@ tags:
|
|
| 21 |
|
| 22 |
Quantized version of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct).
|
| 23 |
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
|
| 24 |
-
It achieves an average score of 79.60 on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 79.33.
|
| 25 |
|
| 26 |
### Model Optimizations
|
| 27 |
|
|
@@ -100,7 +100,7 @@ model.save_quantized(quantized_model_dir)
|
|
| 100 |
|
| 101 |
## Evaluation
|
| 102 |
|
| 103 |
-
The model was evaluated on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
| 104 |
```
|
| 105 |
python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
|
| 106 |
python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2
|
|
@@ -109,7 +109,7 @@ evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--DeepSee
|
|
| 109 |
|
| 110 |
### Accuracy
|
| 111 |
|
| 112 |
-
####
|
| 113 |
<table>
|
| 114 |
<tr>
|
| 115 |
<td><strong>Benchmark</strong>
|
|
|
|
| 21 |
|
| 22 |
Quantized version of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct).
|
| 23 |
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
|
| 24 |
+
It achieves an average score of 79.60 on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 79.33.
|
| 25 |
|
| 26 |
### Model Optimizations
|
| 27 |
|
|
|
|
| 100 |
|
| 101 |
## Evaluation
|
| 102 |
|
| 103 |
+
The model was evaluated on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
| 104 |
```
|
| 105 |
python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
|
| 106 |
python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2
|
|
|
|
| 109 |
|
| 110 |
### Accuracy
|
| 111 |
|
| 112 |
+
#### HumanEval+ Leaderboard evaluation scores
|
| 113 |
<table>
|
| 114 |
<tr>
|
| 115 |
<td><strong>Benchmark</strong>
|