Create README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,174 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - fp8
         | 
| 4 | 
            +
            - vllm
         | 
| 5 | 
            +
            ---
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # DeepSeek-Coder-V2-Lite-Instruct-FP8
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            ## Model Overview
         | 
| 10 | 
            +
            - **Model Architecture:** DeepSeek-Coder-V2-Lite-Instruct
         | 
| 11 | 
            +
              - **Input:** Text
         | 
| 12 | 
            +
              - **Output:** Text
         | 
| 13 | 
            +
            - **Model Optimizations:**
         | 
| 14 | 
            +
              - **Weight quantization:** FP8
         | 
| 15 | 
            +
              - **Activation quantization:** FP8
         | 
| 16 | 
            +
            - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-7B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-7B-Instruct), this models is intended for assistant-like chat.
         | 
| 17 | 
            +
            - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
         | 
| 18 | 
            +
            - **Release Date:** 7/18/2024
         | 
| 19 | 
            +
            - **Version:** 1.0
         | 
| 20 | 
            +
            - **Model Developers:** Neural Magic
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            Quantized version of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct).
         | 
| 23 | 
            +
            <!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
         | 
| 24 | 
            +
            It achieves an average score of 79.60 on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 79.33.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            ### Model Optimizations
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            This model was obtained by quantizing the weights and activations of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
         | 
| 29 | 
            +
            This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations.
         | 
| 32 | 
            +
            [AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ## Deployment
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ### Use with vLLM
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ```python
         | 
| 41 | 
            +
            from vllm import LLM, SamplingParams
         | 
| 42 | 
            +
            from transformers import AutoTokenizer
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            model_id = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_id)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            messages = [
         | 
| 51 | 
            +
                {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
         | 
| 52 | 
            +
                {"role": "user", "content": "Who are you?"},
         | 
| 53 | 
            +
            ]
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            outputs = llm.generate(prompts, sampling_params)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            generated_text = outputs[0].outputs[0].text
         | 
| 62 | 
            +
            print(generated_text)
         | 
| 63 | 
            +
            ```
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ## Creation
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py) with expert gates kept at original precision, as presented in the code snipet below.
         | 
| 70 | 
            +
            Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            ```python
         | 
| 73 | 
            +
            from datasets import load_dataset
         | 
| 74 | 
            +
            from transformers import AutoTokenizer
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            pretrained_model_dir = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
         | 
| 79 | 
            +
            quantized_model_dir = "DeepSeek-Coder-V2-Lite-Instruct-FP8"
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
         | 
| 82 | 
            +
            tokenizer.pad_token = tokenizer.eos_token
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
         | 
| 85 | 
            +
            examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
         | 
| 86 | 
            +
            examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            quantize_config = BaseQuantizeConfig(
         | 
| 89 | 
            +
                quant_method="fp8",
         | 
| 90 | 
            +
                activation_scheme="static"
         | 
| 91 | 
            +
                ignore_patterns=["re:.*lm_head"],
         | 
| 92 | 
            +
            )
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            model = AutoFP8ForCausalLM.from_pretrained(
         | 
| 95 | 
            +
                pretrained_model_dir, quantize_config=quantize_config
         | 
| 96 | 
            +
            )
         | 
| 97 | 
            +
            model.quantize(examples)
         | 
| 98 | 
            +
            model.save_quantized(quantized_model_dir)
         | 
| 99 | 
            +
            ```
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            ## Evaluation
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            The model was evaluated on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
         | 
| 104 | 
            +
            ```
         | 
| 105 | 
            +
            python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
         | 
| 106 | 
            +
            python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2
         | 
| 107 | 
            +
            evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2-sanitized
         | 
| 108 | 
            +
            ```
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            ### Accuracy
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            #### Open LLM Leaderboard evaluation scores
         | 
| 113 | 
            +
            <table>
         | 
| 114 | 
            +
              <tr>
         | 
| 115 | 
            +
               <td><strong>Benchmark</strong>
         | 
| 116 | 
            +
               </td>
         | 
| 117 | 
            +
               <td><strong>DeepSeek-Coder-V2-Lite-Instruct</strong>
         | 
| 118 | 
            +
               </td>
         | 
| 119 | 
            +
               <td><strong>DeepSeek-Coder-V2-Lite-Instruct-FP8(this model)</strong>
         | 
| 120 | 
            +
               </td>
         | 
| 121 | 
            +
               <td><strong>Recovery</strong>
         | 
| 122 | 
            +
               </td>
         | 
| 123 | 
            +
              </tr>
         | 
| 124 | 
            +
              <tr>
         | 
| 125 | 
            +
               <td>base pass@1
         | 
| 126 | 
            +
               </td>
         | 
| 127 | 
            +
               <td>80.8
         | 
| 128 | 
            +
               </td>
         | 
| 129 | 
            +
               <td>79.3
         | 
| 130 | 
            +
               </td>
         | 
| 131 | 
            +
               <td>98.14%
         | 
| 132 | 
            +
               </td>
         | 
| 133 | 
            +
              </tr>
         | 
| 134 | 
            +
              <tr>
         | 
| 135 | 
            +
               <td>base pass@10
         | 
| 136 | 
            +
               </td>
         | 
| 137 | 
            +
               <td>83.4
         | 
| 138 | 
            +
               </td>
         | 
| 139 | 
            +
               <td>84.6
         | 
| 140 | 
            +
               </td>
         | 
| 141 | 
            +
               <td>101.4%
         | 
| 142 | 
            +
               </td>
         | 
| 143 | 
            +
              </tr>
         | 
| 144 | 
            +
              <tr>
         | 
| 145 | 
            +
               <td>base+extra pass@1
         | 
| 146 | 
            +
               </td>
         | 
| 147 | 
            +
               <td>75.8
         | 
| 148 | 
            +
               </td>
         | 
| 149 | 
            +
               <td>74.9
         | 
| 150 | 
            +
               </td>
         | 
| 151 | 
            +
               <td>98.81%
         | 
| 152 | 
            +
               </td>
         | 
| 153 | 
            +
              </tr>
         | 
| 154 | 
            +
              <tr>
         | 
| 155 | 
            +
               <td>base+extra pass@10
         | 
| 156 | 
            +
               </td>
         | 
| 157 | 
            +
               <td>77.3
         | 
| 158 | 
            +
               </td>
         | 
| 159 | 
            +
               <td>79.6
         | 
| 160 | 
            +
               </td>
         | 
| 161 | 
            +
               <td>102.9%
         | 
| 162 | 
            +
               </td>
         | 
| 163 | 
            +
              </tr>
         | 
| 164 | 
            +
              <tr>
         | 
| 165 | 
            +
               <td><strong>Average</strong>
         | 
| 166 | 
            +
               </td>
         | 
| 167 | 
            +
               <td><strong>79.33</strong>
         | 
| 168 | 
            +
               </td>
         | 
| 169 | 
            +
               <td><strong>79.60</strong>
         | 
| 170 | 
            +
               </td>
         | 
| 171 | 
            +
               <td><strong>100.3%</strong>
         | 
| 172 | 
            +
               </td>
         | 
| 173 | 
            +
              </tr>
         | 
| 174 | 
            +
            </table>
         | 
