Safetensors
GGUF
English
materials-science
materials-analysis
computational-materials
property-prediction
materials-discovery
crystal-structure
semiconductor-analysis
band-gap-prediction
thermal-properties
mechanical-properties
electronic-properties
materials-informatics
scientific-ai
lora
fine-tuned
7b
chain-of-thought
reasoning
structured-output
json-analysis
domain-specific
materials-characterization
qwen-2-5-instruct
open-source
step-by-step-analysis
property-correlation
application-prediction
formation-energy-analysis
thermodynamic-stability
elastic-modulus-prediction
bulk-modulus-analysis
thermal-conductivity
thermal-expansion
magnetic-property-analysis
superconductor-detection
crystal-system-identification
spacegroup-analysis
density-calculation
volume-analysis
electron-affinity
ionization-energy
band-gap-type-classification
hexagonal-structures
wide-bandgap-semiconductors
high-power-electronics
optoelectronics
thermal-management
materials-stability
synthesis-feasibility
practical-applications
materials-recommendation
competitive-analysis
materials-verdict
scientific-reasoning
materials-properties-database
mp-materials-project
silicon-carbide-analysis
compound-semiconductors
anisotropic-materials
high-symmetry-crystals
heat-dissipation
dimensional-stability
mechanical-robustness
stiffness-analysis
compression-resistance
temperature-stability
materials-synthesis
coating-applications
abrasion-resistance
non-magnetic-materials
indirect-bandgap
materials-comparison
aln-comparison
cost-effective-materials
si-based-compounds
cryogenic-applications
quantum-computing-materials
magneto-electronics
transparent-conductors
materials-optimization
performance-metrics
materials-classification
property-relationships
structure-property-correlation
materials-design
predictive-modeling
materials-screening
high-temperature-materials
power-device-materials
semiconductor-characterization
materials-data-mining
automated-analysis
materials-intelligence
dual-output-reasoning
comprehensive-materials-analysis
materials-summary-generation
scientific-explanation
materials-expertise
research-grade-analysis
industry-applications
materials-evaluation
performance-assessment
materials-selection
engineering-materials
advanced-ceramics
compound-analysis
crystallographic-analysis
electronic-structure
phonon-properties
doping-studies
interface-analysis
surface-properties
nanomaterials
bulk-materials
thin-film-analysis
composite-materials
functional-materials
smart-materials
biomaterials
energy-materials
catalytic-materials
photovoltaic-materials
battery-materials
fuel-cell-materials
thermoelectric-materials
piezoelectric-materials
ferroelectric-materials
multiferroic-materials
phase-transition-analysis
materials-modeling
MaterialsAnalyst-AI-7B
MaterialsAnalyst-AI
MaterialsAnalyst
MaterialsAnalyst-AI-7B / Scripts /Inference_safetensors.py
Raymond-dev-546730's picture
Upload 2 files
c67333b verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# INSTRUCTIONS: Replace the JSON below with your material's properties
# Common data sources: materialsproject.org, DFT calculations, experimental databases
JSON_INPUT = """
{
"material_id": "mp-8062",
"formula": "SiC",
"elements": [
"Si",
"C"
],
"spacegroup": "P63mc",
"band_gap": 3.26,
"formation_energy_per_atom": -0.73,
"density": 3.21,
"volume": 41.2,
"nsites": 8,
"is_stable": true,
"elastic_modulus": 448,
"bulk_modulus": 220,
"thermal_expansion": 4.2e-06,
"electron_affinity": 4.0,
"ionization_energy": 6.7,
"crystal_system": "Hexagonal",
"magnetic_property": "Non-magnetic",
"thermal_conductivity": 490,
"specific_heat": 0.69,
"is_superconductor": false,
"band_gap_type": "Indirect"
}
"""
def load_model(model_path):
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
return model, tokenizer
def generate_response(model, tokenizer, topic):
topic = topic.strip()
prompt = f"USER: {topic}\nASSISTANT:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=3000,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("ASSISTANT:")[-1].strip()
def run():
model_path = "./" # Path to the directory containing your model weight files
model, tokenizer = load_model(model_path)
result = generate_response(model, tokenizer, JSON_INPUT)
print(result)
if __name__ == "__main__":
run()