Safetensors
GGUF
English
materials-science
materials-analysis
computational-materials
property-prediction
materials-discovery
crystal-structure
semiconductor-analysis
band-gap-prediction
thermal-properties
mechanical-properties
electronic-properties
materials-informatics
scientific-ai
lora
fine-tuned
7b
chain-of-thought
reasoning
structured-output
json-analysis
domain-specific
materials-characterization
qwen-2-5-instruct
open-source
step-by-step-analysis
property-correlation
application-prediction
formation-energy-analysis
thermodynamic-stability
elastic-modulus-prediction
bulk-modulus-analysis
thermal-conductivity
thermal-expansion
magnetic-property-analysis
superconductor-detection
crystal-system-identification
spacegroup-analysis
density-calculation
volume-analysis
electron-affinity
ionization-energy
band-gap-type-classification
hexagonal-structures
wide-bandgap-semiconductors
high-power-electronics
optoelectronics
thermal-management
materials-stability
synthesis-feasibility
practical-applications
materials-recommendation
competitive-analysis
materials-verdict
scientific-reasoning
materials-properties-database
mp-materials-project
silicon-carbide-analysis
compound-semiconductors
anisotropic-materials
high-symmetry-crystals
heat-dissipation
dimensional-stability
mechanical-robustness
stiffness-analysis
compression-resistance
temperature-stability
materials-synthesis
coating-applications
abrasion-resistance
non-magnetic-materials
indirect-bandgap
materials-comparison
aln-comparison
cost-effective-materials
si-based-compounds
cryogenic-applications
quantum-computing-materials
magneto-electronics
transparent-conductors
materials-optimization
performance-metrics
materials-classification
property-relationships
structure-property-correlation
materials-design
predictive-modeling
materials-screening
high-temperature-materials
power-device-materials
semiconductor-characterization
materials-data-mining
automated-analysis
materials-intelligence
dual-output-reasoning
comprehensive-materials-analysis
materials-summary-generation
scientific-explanation
materials-expertise
research-grade-analysis
industry-applications
materials-evaluation
performance-assessment
materials-selection
engineering-materials
advanced-ceramics
compound-analysis
crystallographic-analysis
electronic-structure
phonon-properties
doping-studies
interface-analysis
surface-properties
nanomaterials
bulk-materials
thin-film-analysis
composite-materials
functional-materials
smart-materials
biomaterials
energy-materials
catalytic-materials
photovoltaic-materials
battery-materials
fuel-cell-materials
thermoelectric-materials
piezoelectric-materials
ferroelectric-materials
multiferroic-materials
phase-transition-analysis
materials-modeling
MaterialsAnalyst-AI-7B
MaterialsAnalyst-AI
MaterialsAnalyst
File size: 1,954 Bytes
c67333b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# INSTRUCTIONS: Replace the JSON below with your material's properties
# Common data sources: materialsproject.org, DFT calculations, experimental databases

JSON_INPUT = """
{
  "material_id": "mp-8062",
  "formula": "SiC",
  "elements": [
    "Si",
    "C"
  ],
  "spacegroup": "P63mc",
  "band_gap": 3.26,
  "formation_energy_per_atom": -0.73,
  "density": 3.21,
  "volume": 41.2,
  "nsites": 8,
  "is_stable": true,
  "elastic_modulus": 448,
  "bulk_modulus": 220,
  "thermal_expansion": 4.2e-06,
  "electron_affinity": 4.0,
  "ionization_energy": 6.7,
  "crystal_system": "Hexagonal",
  "magnetic_property": "Non-magnetic",
  "thermal_conductivity": 490,
  "specific_heat": 0.69,
  "is_superconductor": false,
  "band_gap_type": "Indirect"
}
"""

def load_model(model_path):
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True
    )
    
    tokenizer = AutoTokenizer.from_pretrained(
        model_path,
        trust_remote_code=True
    )
    
    return model, tokenizer

def generate_response(model, tokenizer, topic):
    topic = topic.strip()
    
    prompt = f"USER: {topic}\nASSISTANT:"
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    outputs = model.generate(
        **inputs,
        max_new_tokens=3000,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        do_sample=True
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    return response.split("ASSISTANT:")[-1].strip()

def run():
    model_path = "./" # Path to the directory containing your model weight files
    
    model, tokenizer = load_model(model_path)
    
    result = generate_response(model, tokenizer, JSON_INPUT)
    
    print(result)

if __name__ == "__main__":
    run()