|
|
|
""" |
|
Upload PyTorch wheel collection to HuggingFace |
|
Usage: HF_TOKEN=your_token python upload_to_hf.py |
|
""" |
|
|
|
import os |
|
from huggingface_hub import HfApi |
|
|
|
def upload_to_huggingface(): |
|
|
|
token = os.getenv("HF_TOKEN") |
|
if not token: |
|
print("❌ Error: HF_TOKEN environment variable not set") |
|
print("Usage: HF_TOKEN=your_token python upload_to_hf.py") |
|
return False |
|
|
|
|
|
api = HfApi(token=token) |
|
|
|
|
|
repo_id = "RDHub/pytorch_python_310" |
|
folder_path = "/media/acleda/DATA/code/ai-engineer/khmer-nlp/pytorch_python_310" |
|
|
|
print(f"Uploading folder: {folder_path}") |
|
print(f"To repository: {repo_id}") |
|
print("This may take a while due to large file sizes...") |
|
|
|
try: |
|
|
|
api.upload_folder( |
|
folder_path=folder_path, |
|
repo_id=repo_id, |
|
repo_type="model", |
|
) |
|
|
|
print("✅ Upload completed successfully!") |
|
print(f"Repository available at: https://huggingface.co/{repo_id}") |
|
|
|
except Exception as e: |
|
print(f"❌ Upload failed: {e}") |
|
return False |
|
|
|
return True |
|
|
|
if __name__ == "__main__": |
|
success = upload_to_huggingface() |
|
if success: |
|
print("\n🎉 PyTorch wheel collection is now available on HuggingFace!") |
|
print("Users can now install with:") |
|
print("git clone https://huggingface.co/RDHub/pytorch_python_310") |
|
print("cd pytorch_python_310 && pip install lib_wheel/*.whl") |
|
else: |
|
print("\n❌ Upload failed. Please check the error messages above.") |