Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,85 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
## Introduction
|
| 8 |
+
|
| 9 |
+
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models, co-developed by the **IPADS Lab at Shanghai Jiao Tong University** and **Zenergize**. Designed from the ground up for resource-constrained environments, SmallThinker brings powerful, private, and low-latency AI directly to your personal devices, without relying on the cloud.
|
| 10 |
+
|
| 11 |
+
## Performance
|
| 12 |
+
| Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
|
| 13 |
+
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 14 |
+
| `SmallThinker-4BA0.6B-Instruct` | 66.11 | 31.31 | 80.02 | 60.60 | 69.69 | 42.20 | 82.32 | 61.75 |
|
| 15 |
+
| `qwen3-0.6b` | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
|
| 16 |
+
| `qwen3-1.7b` | 64.19 | 27.78 | 81.88 | 63.6 | 69.50 | 35.60 | 61.59 | 57.73 |
|
| 17 |
+
| `gemma3nE2b` | 63.04 | 20.2 | 82.34 | 58.6 | 73.2 | 27.90 | 64.63 | 55.70 |
|
| 18 |
+
| `Llama3.2-3B` | 64.15 | 24.24 | 75.51 | 40 | 71.16 | 15.30 | 55.49 | 49.41 |
|
| 19 |
+
| `Llama-3.2-1B-Instruct` | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
|
| 20 |
+
## Model Card
|
| 21 |
+
|
| 22 |
+
<div align="center">
|
| 23 |
+
|
| 24 |
+
| | |
|
| 25 |
+
|:---:|:---:|
|
| 26 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
| 27 |
+
| **Total Parameters** | 4B |
|
| 28 |
+
| **Activated Parameters** | 0.6B |
|
| 29 |
+
| **Number of Layers** | 32 |
|
| 30 |
+
| **Attention Hidden Dimension** | 1536 |
|
| 31 |
+
| **MoE Hidden Dimension** (per Expert) | 1408 |
|
| 32 |
+
| **Number of Attention Heads** | 12 |
|
| 33 |
+
| **Number of Experts** | 32 |
|
| 34 |
+
| **Selected Experts per Token** | 4 |
|
| 35 |
+
| **Vocabulary Size** | 151,936 |
|
| 36 |
+
| **Context Length** | 32K |
|
| 37 |
+
| **Attention Mechanism** | GQA |
|
| 38 |
+
| **Activation Function** | ReGLU |
|
| 39 |
+
</div>
|
| 40 |
+
|
| 41 |
+
## How to Run
|
| 42 |
+
|
| 43 |
+
### Transformers
|
| 44 |
+
|
| 45 |
+
The latest version of `transformers` is recommended or `transformers>=4.52.4` is required.
|
| 46 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 50 |
+
import torch
|
| 51 |
+
|
| 52 |
+
path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
|
| 53 |
+
device = "cuda"
|
| 54 |
+
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
| 56 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
| 57 |
+
|
| 58 |
+
messages = [
|
| 59 |
+
{"role": "user", "content": "Give me a short introduction to large language model."},
|
| 60 |
+
]
|
| 61 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
| 62 |
+
|
| 63 |
+
model_outputs = model.generate(
|
| 64 |
+
model_inputs,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
max_new_tokens=1024
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
output_token_ids = [
|
| 70 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
| 74 |
+
print(responses)
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
### ModelScope
|
| 79 |
+
|
| 80 |
+
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 84 |
+
```
|
| 85 |
+
|