MedMCQA LoRA — Meta-Llama-3-8B-Instruct
Adapter weights only for meta-llama/Meta-Llama-3-8B-Instruct
, fine-tuned to answer medical multiple-choice questions (A/B/C/D).
Subjects used for fine-tuning and evaluation: Biochemistry and Physiology.
Educational use only. Not medical advice.
Access note: Llama-3 base is a public gated model on HF.
Accept the base model license on its page and use a fine-grained token that allows public gated repos.
Quick use (Transformers + PEFT)
import os, re
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
BASE = "meta-llama/Meta-Llama-3-8B-Instruct"
ADAPTER = "Pk3112/medmcqa-lora-llama3-8b-instruct"
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") # required if not logged in
tok = AutoTokenizer.from_pretrained(BASE, use_fast=True, token=hf_token)
base = AutoModelForCausalLM.from_pretrained(BASE, device_map="auto", token=hf_token)
model = PeftModel.from_pretrained(base, ADAPTER, token=hf_token).eval()
prompt = (
"Question: Which vitamin is absorbed in the ileum?\n"
"A. Vitamin D\nB. Vitamin B12\nC. Iron\nD. Fat\n\n"
"Answer:"
)
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=8, do_sample=False)
text = tok.decode(out[0], skip_special_tokens=True)
m = re.search(r"Answer:\s*([A-D])\b", text)
print(f"Answer: {m.group(1)}" if m else text.strip())
Tip: For rich explanations, increase max_new_tokens
. For answer-only, keep it small and stop after the letter to reduce latency.
Results (Biochemistry + Physiology)
Model | Internal val acc (%) | Original val acc (%) | TTFT (ms) | Gen time (ms) | In/Out tokens |
---|---|---|---|---|---|
Llama-3-8B (LoRA) | 83.83 | 65.20 | 567 | 14874 | 148 / 80 |
Training (summary)
- Frameworks: Unsloth + PEFT/LoRA (QLoRA NF4)
- LoRA:
r=32, alpha=64, dropout=0.0
; targetsq_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj
- Max seq length:
768
- Objective: answer-only target (
Answer: <A/B/C/D>
) - Split: stratified 70/30 on
subject_name
(Biochemistry, Physiology)
Training code & reproducibility
- GitHub repo: https://github.com/PranavKumarAV/MedMCQA-Chatbot-Finetune-Medical-AI
- Release (code snapshot): https://github.com/PranavKumarAV/MedMCQA-Chatbot-Finetune-Medical-AI/releases/tag/v1.0-medmcqa
Files provided
adapter_model.safetensors
adapter_config.json
License & usage
- Adapter: “Other” — adapter weights only; use requires access to the base model under the Meta Llama 3 Community License (accept on base model page)
- Base model:
meta-llama/Meta-Llama-3-8B-Instruct
(public gated on HF) - Dataset:
openlifescienceai/medmcqa
— follow dataset license - Safety: Educational use only. Not medical advice.
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Pk3112/medmcqa-lora-llama3-8b-instruct
Base model
meta-llama/Meta-Llama-3-8B-Instruct