|
--- |
|
library_name: mlx |
|
tags: |
|
- mlx |
|
- automatic-speech-recognition |
|
- speech |
|
- audio |
|
- FastConformer |
|
- Conformer |
|
- Parakeet |
|
license: cc-by-4.0 |
|
pipeline_tag: automatic-speech-recognition |
|
base_model: nvidia/parakeet-tdt-0.6b-v2 |
|
--- |
|
|
|
# NexaAI/parakeet-tdt-0.6b-v2-MLX |
|
|
|
## Quickstart |
|
|
|
Run them directly with [nexa-sdk](https://github.com/NexaAI/nexa-sdk) installed |
|
In nexa-sdk CLI: |
|
|
|
```bash |
|
NexaAI/parakeet-tdt-0.6b-v2-MLX |
|
``` |
|
|
|
## Overview |
|
|
|
`parakeet-tdt-0.6b-v2` is a 600-million-parameter automatic speech recognition (ASR) model designed for high-quality English transcription, featuring support for punctuation, capitalization, and accurate timestamp prediction. Try Demo here: https://huggingface.co/spaces/nvidia/parakeet-tdt-0.6b-v2 |
|
|
|
This XL variant of the FastConformer architecture integrates the TDT decoder and is trained with full attention, enabling efficient transcription of audio segments up to 24 minutes in a single pass. The model achieves an RTFx of 3380 on the HF-Open-ASR leaderboard with a batch size of 128. Note: *RTFx Performance may vary depending on dataset audio duration and batch size.* |
|
|
|
**Key Features** |
|
- Accurate word-level timestamp predictions |
|
- Automatic punctuation and capitalization |
|
- Robust performance on spoken numbers, and song lyrics transcription |
|
|
|
For more information, refer to the [Model Architecture](#model-architecture) section and the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer). |
|
|
|
This model is ready for commercial/non-commercial use. |
|
|
|
|
|
## Benchmark Results |
|
|
|
#### Huggingface Open-ASR-Leaderboard Performance |
|
The performance of Automatic Speech Recognition (ASR) models is measured using Word Error Rate (WER). Given that this model is trained on a large and diverse dataset spanning multiple domains, it is generally more robust and accurate across various types of audio. |
|
|
|
### Base Performance |
|
The table below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model): |
|
|
|
| **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** | |
|
|:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:| |
|
| parakeet-tdt-0.6b-v2 | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - | |
|
|
|
### Noise Robustness |
|
Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples: |
|
|
|
| **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** | |
|
|:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:| |
|
| Clean | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - | |
|
| SNR 50 | 6.04 | 11.11 | 11.12 | 9.74 | 1.70 | 3.18 | 2.18 | 3.34 | 5.98 | +0.25% | |
|
| SNR 25 | 6.50 | 12.76 | 11.50 | 9.98 | 1.78 | 3.63 | 2.54 | 3.46 | 6.34 | -7.04% | |
|
| SNR 5 | 8.39 | 19.33 | 13.83 | 11.28 | 2.36 | 5.50 | 3.91 | 3.91 | 6.96 | -38.11% | |
|
|
|
### Telephony Audio Performance |
|
Performance comparison between standard 16kHz audio and telephony-style audio (using μ-law encoding with 16kHz→8kHz→16kHz conversion): |
|
|
|
| **Audio Format** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** | |
|
|:-----------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:| |
|
| Standard 16kHz | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - | |
|
| μ-law 8kHz | 6.32 | 11.98 | 11.16 | 10.02 | 1.78 | 3.52 | 2.20 | 3.38 | 6.52 | -4.10% | |
|
|
|
These WER scores were obtained using greedy decoding without an external language model. Additional evaluation details are available on the [Hugging Face ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard). |
|
|
|
|
|
|
|
## Reference |
|
- **Original model card**: [nvidia/parakeet-tdt-0.6b-v2](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2) |
|
- [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084) |
|
- [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795) |
|
- [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) |
|
- [Youtube-commons: A massive open corpus for conversational and multimodal data](https://huggingface.co/blog/Pclanglais/youtube-commons) |
|
- [Yodas: Youtube-oriented dataset for audio and speech](https://arxiv.org/abs/2406.00899) |
|
- [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) |
|
- [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036) |
|
- [Granary: Speech Recognition and Translation Dataset in 25 European Languages](https://arxiv.org/pdf/2505.13404) |
|
|