SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Tabletop Simulator Hub - Workshop Mods and Board Game Fans',
'PC Gamer Club - Official Community for PC Gaming Enthusiasts',
'Booking.com - Hotels, Homes, and Vacation Rentals Worldwide',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.9822 |
| spearman_cosine | 0.2402 |
Training Details
Training Dataset
- Size: 49,800 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 10 tokens
- mean: 14.76 tokens
- max: 21 tokens
- min: 10 tokens
- mean: 14.64 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.04
- max: 1.0
- Samples:
sentence_0 sentence_1 label TripAdvisor - Hotel Reviews, Photos, and Travel ForumsDocker Hub - Container Image Repository for DevOps Environments0.0Mastodon - Decentralized Social Media for Niche CommunitiesAllrecipes - User-Submitted Recipes, Reviews, and Cooking Tips0.0YouTube Music - Music Videos, Official Albums, and Live PerformancesESPN - Sports News, Live Scores, Stats, and Highlights0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 6multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|---|---|---|---|
| 0.0754 | 500 | 0.0216 | - |
| 0.1509 | 1000 | 0.0178 | - |
| 0.2263 | 1500 | 0.016 | - |
| 0.3018 | 2000 | 0.015 | - |
| 0.3772 | 2500 | 0.0144 | - |
| 0.4526 | 3000 | 0.013 | - |
| 0.5281 | 3500 | 0.0123 | - |
| 0.6035 | 4000 | 0.0119 | - |
| 0.6789 | 4500 | 0.0116 | - |
| 0.7544 | 5000 | 0.0102 | - |
| 0.8298 | 5500 | 0.0092 | - |
| 0.9053 | 6000 | 0.0087 | - |
| 0.9807 | 6500 | 0.0076 | - |
| 1.0561 | 7000 | 0.0068 | - |
| 1.1316 | 7500 | 0.0063 | - |
| 1.2070 | 8000 | 0.0061 | - |
| 1.2824 | 8500 | 0.0059 | - |
| 1.3579 | 9000 | 0.0055 | - |
| 1.4333 | 9500 | 0.0056 | - |
| 1.5088 | 10000 | 0.0045 | - |
| 1.5842 | 10500 | 0.004 | - |
| 1.6596 | 11000 | 0.0045 | - |
| 1.7351 | 11500 | 0.0039 | - |
| 1.8105 | 12000 | 0.0044 | - |
| 1.8859 | 12500 | 0.0036 | - |
| 1.9614 | 13000 | 0.0032 | - |
| 2.0368 | 13500 | 0.0034 | - |
| 2.1123 | 14000 | 0.0028 | - |
| 2.1877 | 14500 | 0.0029 | - |
| 2.2631 | 15000 | 0.0031 | - |
| 2.3386 | 15500 | 0.0026 | - |
| 2.4140 | 16000 | 0.0026 | - |
| 2.4894 | 16500 | 0.003 | - |
| 2.5649 | 17000 | 0.0027 | - |
| 2.6403 | 17500 | 0.0026 | - |
| 2.7158 | 18000 | 0.0024 | - |
| 2.7912 | 18500 | 0.0025 | - |
| 2.8666 | 19000 | 0.002 | - |
| 2.9421 | 19500 | 0.0022 | - |
| 3.0175 | 20000 | 0.0021 | - |
| 3.0929 | 20500 | 0.0021 | - |
| 3.1684 | 21000 | 0.0019 | - |
| 3.2438 | 21500 | 0.0021 | - |
| 3.3193 | 22000 | 0.002 | - |
| 3.3947 | 22500 | 0.0018 | - |
| 3.4701 | 23000 | 0.0018 | - |
| 3.5456 | 23500 | 0.0019 | - |
| 3.6210 | 24000 | 0.0017 | - |
| 3.6964 | 24500 | 0.0017 | - |
| 3.7719 | 25000 | 0.0016 | - |
| 3.8473 | 25500 | 0.0016 | - |
| 3.9228 | 26000 | 0.0015 | - |
| 3.9982 | 26500 | 0.0019 | - |
| 4.0736 | 27000 | 0.0016 | - |
| 4.1491 | 27500 | 0.0016 | - |
| 4.2245 | 28000 | 0.0015 | - |
| 4.2999 | 28500 | 0.0015 | - |
| 4.3754 | 29000 | 0.0016 | - |
| 4.4508 | 29500 | 0.0014 | - |
| 4.5263 | 30000 | 0.0015 | - |
| 4.6017 | 30500 | 0.0014 | - |
| 4.6771 | 31000 | 0.0017 | - |
| 4.7526 | 31500 | 0.0014 | - |
| 4.8280 | 32000 | 0.0016 | - |
| 4.9034 | 32500 | 0.0015 | - |
| 4.9789 | 33000 | 0.0014 | - |
| 5.0543 | 33500 | 0.0014 | - |
| 5.1298 | 34000 | 0.0013 | - |
| 5.2052 | 34500 | 0.0014 | - |
| 5.2806 | 35000 | 0.0014 | - |
| 5.3561 | 35500 | 0.0016 | - |
| 5.4315 | 36000 | 0.0013 | - |
| 5.5069 | 36500 | 0.0015 | - |
| 5.5824 | 37000 | 0.0013 | - |
| 5.6578 | 37500 | 0.0016 | - |
| 5.7333 | 38000 | 0.0015 | - |
| 5.8087 | 38500 | 0.0014 | - |
| 5.8841 | 39000 | 0.0015 | - |
| 5.9596 | 39500 | 0.0014 | - |
| -1 | -1 | - | 0.2402 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 704
Model tree for Mozilla/smart-tab-embedding
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosineself-reported0.982
- Spearman Cosineself-reported0.240