eurobert-ner-model-20250726-134739

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0803
  • Precision: 0.8140
  • Recall: 0.8593
  • F1: 0.8360
  • Accuracy: 0.9753

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.4979 117 0.3960 0.2073 0.3370 0.2567 0.8704
No log 0.9957 234 0.1945 0.4331 0.6111 0.5069 0.9321
No log 1.4936 351 0.1142 0.6375 0.7556 0.6915 0.9554
No log 1.9915 468 0.0943 0.6603 0.7630 0.7079 0.9644
0.4252 2.4894 585 0.0852 0.7092 0.8037 0.7535 0.9677
0.4252 2.9872 702 0.0897 0.6926 0.7926 0.7392 0.9669
0.4252 3.4851 819 0.0949 0.7838 0.8593 0.8198 0.9747
0.4252 3.9830 936 0.0803 0.8140 0.8593 0.8360 0.9753
0.0446 4.4809 1053 0.1163 0.7441 0.8185 0.7795 0.9705
0.0446 4.9787 1170 0.1178 0.7690 0.8259 0.7964 0.9714
0.0446 5.4766 1287 0.1559 0.7736 0.8481 0.8092 0.9731
0.0446 5.9745 1404 0.1551 0.7416 0.8185 0.7782 0.9694
0.0123 6.4723 1521 0.2088 0.7363 0.7963 0.7651 0.9646
0.0123 6.9702 1638 0.2102 0.7491 0.8074 0.7772 0.9675

Framework versions

  • Transformers 4.54.0
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
35
Safetensors
Model size
212M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MikeDoes/eurobert-ner-model-20250726-134739

Finetuned
(39)
this model